設(shè)a,b,c分別是△ABC的三個(gè)角A,B,C所對(duì)的邊,研究A=2B是a2=b(b+c)的什么條件?以下是某同學(xué)的解法:
由A=2B,得sinA=sin2B,即:sinA=2sinB•cosB?a=2bcosB
?a=2b•
a2+c2-b2
2ac
.變形得a2c=a2b+bc2-b3?a2(c-b)
=b(b+c)(c-b)
所以,b=c或a2=b(b+c)
由此可知:A=2B是a2=b(b+c)的必要非充分條件.
請(qǐng)你研究這位同學(xué)解法的正誤,并結(jié)合自己的思考,可以得到“A=2B”是“a2=b(b+c)”的( 。l件.
A.充分非必要B.必要非充分
C.充要D.非充分非必要
此同學(xué)的解法是錯(cuò)誤的,這是因?yàn)楫?dāng)b=c時(shí),亦有a2=b(b+c),這是一個(gè)特殊情況,這說明此解法有不完善之處,正確證明過程如下:
先證a2=b(b+c)是A=2B的充分條件
∵a2=b(b+c)
∴4R2sinA2=4R2sinB(sinB+sinC)
∴sinA2=sinB(sinB+sinC)
∴(sinA-sinB)(sinA+sinB)=sinB×sinC
又sinA-sinB=2sin
A-B
2
cos
A+B
2

sinA+sinB=2sin
A+B
2
cos
A-B
2

∴(sinA-sinB)(sinA+sinB)
=2sin
A-B
2
cos
A+B
2
×2sin
A+B
2
cos
A-B
2

=sin(A-B)sin(A+B)
又sin(A-B)sin(A+B)=sinB×sinC=sinB×sin(A+B)
∴sin(A-B)=sinB
∴A-B=B
∴A=2B
再證a2=b(b+c)是A=2B的必要條件,
由上證每步都可逆,故A=2B時(shí),亦有a2=b(b+c),即A=2B是a2=b(b+c)的充分條件
綜上得,該同學(xué)證明錯(cuò)誤,應(yīng)為充要條件
故選C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a、b、c分別是方程2x=log
1
2
x,(
1
2
)
x
=log
1
2
x,(
1
2
)
x
=log2x
的實(shí)數(shù)根,則( 。
A、c<b<a
B、a<b<c
C、b<a<c
D、c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a、b、c分別是△ABC三個(gè)內(nèi)角∠A、∠B、∠C的對(duì)邊,若向量
m
=(1-cos(A+B),cos
A-B
2
)
,
n
=(
5
8
,cos
A-B
2
)
m
n
=
9
8
,
(1)求tanA•tanB的值;
(2)求
absinC
a2+b2-c2
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a、b、c分別是函數(shù)f(x)=(
1
2
)x-log2x,g(x)=2x-log
1
2
x,h(x)=(
1
2
)x-log
1
2
x
的零點(diǎn),則a、b、c的大小關(guān)系為(  )
A、b<c<a
B、a<b<c
C、b<a<c
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a、b、c分別是先后擲一枚質(zhì)地均勻的正方體骰子三次得到的點(diǎn)數(shù).
(1)求使函數(shù)f(x)=
1
3
bx3+
1
2
(a+c)x2+(a+c-b)x-4
在R上不存在極值點(diǎn)的概率;
(2)設(shè)隨機(jī)變量ξ=|a-b|,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,設(shè)a,b,c分別是三個(gè)內(nèi)角A,B,C所對(duì)的邊,b=2,c=1,面積S△ABC=
1
2
,則內(nèi)角A的大小為
π
6
6
π
6
6

查看答案和解析>>

同步練習(xí)冊(cè)答案