精英家教網 > 高中數學 > 題目詳情

已知a>0,函數f(x)=ax-bx2,

(1)當b>0時,若對任意x∈R都有f(x)≤1,證明:a≤2;

(2)當b>1時,證明:對任意x∈[0, 1], |f(x)|≤1的充要條件是:b-1≤a≤2;

(3)當0<b≤1時,討論:對任意x∈[0, 1], |f(x)|≤1的充要條件。

證明見解析


解析:

(1)證:依題設,對任意x∈R,都有f(x)≤1!遞(x)=-b(x-)2+,∴f()=≤1,∵a>0, b>0, ∴a≤2

    (2)證:(必要性),對任意x∈[0, 1],|f(x)|≤1-1≤f(x)據此可推出-1≤f(1)即a-b≥-1,∴a≥b-1。對任意x∈[0, 1],|f(x)|≤1f(x)≤1,因為b>1,可推出f()≤1。即a·-≤1,∴a≤2,所以b-1≤a≤2。

    (充分性):因b>1, a≥b-1,對任意x∈[0, 1],可以推出:ax-bx2≥b(x-x2)-x≥-x

≥-1,即:ax-bx2≥-1;因為b>1,a≤2,對任意x∈[0, 1],可推出ax-bx2≤2-bx2≤1,即ax-bx2≤1,∴-1≤f(x)≤1。

綜上,當b>1時,對任意x∈[0, 1], |f(x)|≤1的充要條件是:b-1≤a≤2。

(3)解:因為a>0, 0<b≤1時,對任意x∈[0, 1]。

f(x)=ax-bx2≥-b≥-1,即f(x)≥-1;

f(x)≤1f(1)≤1a-b≤1,即a≤b+1;a≤b+1f(x)≤(b+1)x-bx2≤1,即f(x)≤1。

所以,當a>0, 0<b≤1時,對任意x∈[0, 1],|f(x)|≤1的充要條件是:a≤b+1.

練習冊系列答案
相關習題

科目:高中數學 來源:2012-2013學年河北省石家莊市高三下學期第二次質量檢測理科數學試卷(解析版) 題型:解答題

.(本小題滿分12分)

已知函數f(x)=ln+mx2(m∈R)

(I)求函數f(x)的單調區(qū)間;

(II)若m=0,A(a,f(a))、B(b,f(b))是函數f(x)圖象上不同的兩點,且a>b>0, 為f(x)的導函數,求證:

(III)求證

 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=loga(ax-1)(a>0且a≠1)

(1)求f(x)的定義域;

(2)討論f(x)的單調性;

(3)x為何值時,函數值大于1.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-是偶函數,a為實常數.

(1)求b的值;

(2)當a=1時,是否存在n>m>0,使得函數y=f(x)在區(qū)間[m,n]上的函數值組成的集合也是[m,n],若存在,求出m,n的值,否則,說明理由.

(3)若在函數定義域內總存在區(qū)間[m,n](m<n),使得y=f(x)在區(qū)間[m,n]上的函數值組成的集合也是[m,n],求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知指函數ƒ(x)=ax(a>0,且a≠1)自變量與函數值  的部分對應值如右表:

那么a=_____;若函數y=x[ƒ(x)-2],則滿足條件y>0的x的集合為___________________.

x

-1

0

2

ƒ(x)

2

1

0.25

查看答案和解析>>

同步練習冊答案