【題目】已知函數.
(1)當時,若在區(qū)間上的最小值為,求的取值范圍;
(2)若對任意, ,且恒成立,求的取值范圍.
【答案】(1);(2).
【解析】試題分析:(1)由題意當a>0時,求導,令f′(x)=0,根據函數的單調性與導數的關系,分類討論,求得f(x)的最小值,求得a的取值范圍;
(2)設g(x)=f(x)+2x,求導,令當a=0時,,g(x)在(0,+∞)上單調遞增,當a≠0時,只需g′(x)≥0在(0,+∞)上恒成立,根據二次函數的性質,即可求得a的取值范圍.
試題解析:
(1)函數的定義域是.當時,
,
令,得,
所以或.
當,即時,在上單調遞增,所以在上的最小值是;
當時,在上的最小值是,不合題意;
當時,在上單調遞減, 在上的最小值是,
不合題意,
綜上:.
(2)設,即,
只要在上單調遞增即可,而,
當時,,此時在上單調遞增;
當時,只需在上恒成立,因為,只要,
則需要,對于函數,過定點,對稱軸,只需
即,綜上,.
科目:
來源: 題型:【題目】下表提供了某廠節(jié)能降耗技術改造后生產甲產品過程中記錄的產量x(噸)與相應的生產能耗y(噸標準煤)的幾組對照數據.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)請畫出上表數據的散點圖;
(2)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程;
(3)已知該廠技改前100噸甲產品的生產能耗為90噸標準煤,試根據(2)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤?
參考公式: .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的前項和為, , .等 差數列中, ,且公差.
(Ⅰ)求數列的通項公式;
(Ⅱ)是否存在正整數,使得?.若存在,求出的最小值;若 不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】分類變量X和Y的列聯表如下:
y1 | y2 | 總計 | |
x1 | a | b | a+b |
x2 | c | d | c+d |
總計 | a+c | b+d | a+b+c+d |
則下列說法中正確的是( )
A.ad-bc越小,說明X與Y關系越弱
B.ad-bc越大,說明X與Y關系越強
C.(ad-bc)2越大,說明X與Y關系越強
D.(ad-bc)2越接近于0,說明X與Y關系越強
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近幾年出現各種食品問題,食品添加劑會引起血脂增高、血壓增高、血糖增高等疾病.為了解三高疾病是否與性別有關,醫(yī)院隨機對入院的60人進行了問卷調查,得到了如下的列聯表:
患三高疾病 | 不患三高疾病 | 合計 | |
男 | 6 | 30 | |
女 | |||
合計 | 36 |
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式 ,其中 )
(1)請將如圖的列聯表補充完整;若用分層抽樣的方法在患三高疾病的人群中抽 人,其中女性抽多少人?
(2)為了研究三高疾病是否與性別有關,請計算出統(tǒng)計量 ,并說明你有多大的把握認為三高疾病與性別有關?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)是定義在R上的偶函數,對任意x∈R,都有f(x+2)=f(x﹣2),且當x∈[﹣2,0]時,f(x)=( )x﹣1,若在區(qū)間(﹣2,6]內關于x的方程f(x)﹣loga(x+2)=0(a>1)有3個不同的實數根,則a的取值范圍是( )
A.(1,2)
B.(2,+∞)
C.(1, )
D.( ,2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在三棱錐A-BOC中,OA⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=,動點D在線段AB上.
(1)求證:平面COD⊥平面AOB;
(2)當OD⊥AB時,求三棱錐C-OBD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形中, 點是邊的中點,將沿折起,使平面平面,連接得到如圖所示的幾何體.
(1)求證; 平面;
(2)若二面角的平面角的正切值為求二面角的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com