已知在四棱錐中,底面是邊長(zhǎng)為2的正方形,側(cè)棱平面,且, 為底面對(duì)角線的交點(diǎn),分別為棱的中點(diǎn)
(1)求證://平面;
(2)求證:平面;
(3)求點(diǎn)到平面的距離。
(1)利用中位線性質(zhì)定理可知,那么結(jié)合線面平行的判定定理的到。
(2)根據(jù)面,又可知,結(jié)合線面垂直的判定定理得到。
(3)
【解析】
試題分析:(1)證明:是正方形,,為的中點(diǎn),又為的中點(diǎn),,且平面,平面,平面.
(2)證明:面,面,,又可知,而,面,面,面,,又,為的中點(diǎn),,而,平面,平面
(3)解:設(shè)點(diǎn)到平面的距離為,由(2)易證,,,,
又,即,,得
即點(diǎn)到平面的距離為
考點(diǎn):平行和垂直的證明,以及距離的求解
點(diǎn)評(píng):主要是考查了空間中線面的平行,以及線面垂直的判定定理的運(yùn)用,以及運(yùn)用等體積法求解距離,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015屆云南省高二上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知在四棱錐中,底面是矩形,平面,、分別是、的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)若與平面所成角為,且,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆河南省方城一高高三第一次調(diào)研(月考)考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知在四棱錐中,底面是矩形,平面,,,分別是的中點(diǎn).
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年貴州省六高三第一次考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)如圖,已知在四棱錐中,底面是矩形,平面,,,是的中點(diǎn), 是線段上的點(diǎn).
(I)當(dāng)是的中點(diǎn)時(shí),求證:平面;
(II)要使二面角的大小為,試確定點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三下學(xué)期模擬沖刺考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分l2分)已知在四棱錐中,底面是矩形,且,,平面,、分別是線段、的中點(diǎn).
(1)證明:;
(2)判斷并說(shuō)明上是否存在點(diǎn),使得∥平面;
(3)若與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高考模擬預(yù)測(cè)卷(三)理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知在四棱錐中,底面是矩形,且,,平面,、分別是線段、的中點(diǎn).
(1)證明:;
(2)判斷并說(shuō)明上是否存在點(diǎn),使得∥平面;
(3)若與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com