設(shè)函數(shù)數(shù)學(xué)公式內(nèi)有極值.
(1)求實(shí)數(shù)a的取值范圍;
(2)若x1∈(0,1),x2∈(1,+∞),求證:數(shù)學(xué)公式

(1)解:函數(shù)的定義域?yàn)椋?,1)∪(1,+∞)
求導(dǎo)函數(shù)
∵函數(shù)內(nèi)有極值
∴f′(x)=0在內(nèi)有解,令g(x)=x2-(a+2)x+1=(x-α)(x-β)
∵αβ=1,不妨設(shè),則β>e
∵g(0)=1>0,
,

(2)證明:由f′(x)>0,可得0<x<α或x>β;由f′(x)<0,可得α<x<1或1<x<β
∴f(x)在(0,α)內(nèi)遞增,在(α,1)內(nèi)遞減,在(1,β)內(nèi)遞減,在(β,+∞)遞增
由x1∈(0,1),可得
由x2∈(1,+∞),可得
∴f(x2)-f(x1)≥f(β)-f(α)
∵αβ=1,α+β=a+2
==

則h′(β)=>0,h(β)在(0,+∞)上單調(diào)遞增


分析:(1)函數(shù)的定義域?yàn)椋?,1)∪(1,+∞),求導(dǎo)函數(shù),利用函數(shù)內(nèi)有極值,可得f′(x)=0在內(nèi)有解,令g(x)=x2-(a+2)x+1=(x-α)(x-β)根據(jù)αβ=1,可設(shè),則β>e,從而可求實(shí)數(shù)a的取值范圍;
(2)求導(dǎo)函數(shù)確定函數(shù)f(x)的單調(diào)性,進(jìn)而由x1∈(0,1),可得;由x2∈(1,+∞),可得,所以f(x2)-f(x1)≥f(β)-f(α),又=.記,可得h(β)在(0,+∞)上單調(diào)遞增,從而問題得證.
點(diǎn)評(píng):本題以函數(shù)為載體,考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的極值與單調(diào)性,考查不等式的證明,綜合性比較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx+
a
x-1
在(0,
1
e
)
內(nèi)有極值.
(1)求實(shí)數(shù)a的取值范圍;
(2)若x1∈(0,1),x2∈(1,+∞),求證:f(x2)-f(x1)>e+2-
1
e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知b>-1,c>0,函數(shù)的圖象與函數(shù)的圖象相切.

   (Ⅰ)設(shè)

   (Ⅱ)是否存在常數(shù)c,使得函數(shù)內(nèi)有極值點(diǎn)?若存在,求出c的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省汕頭市金山中學(xué)高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)內(nèi)有極值.
(1)求實(shí)數(shù)a的取值范圍;
(2)若x1∈(0,1),x2∈(1,+∞),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年遼寧省部分重點(diǎn)中學(xué)高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)內(nèi)有極值.
(1)求實(shí)數(shù)a的取值范圍;
(2)若x1∈(0,1),x2∈(1,+∞),求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案