【題目】已知兩個(gè)不相等的非零向量,兩組向量均由2個(gè)3個(gè)排列而成,記,表示所有可能取值中的最小值,則下列命題中

15個(gè)不同的值;(2)若無(wú)關(guān);(3)若,則無(wú)關(guān);(4)若,則;(5)若,,則的夾角為.正確的是( 。

A.1)(2B.2)(4C.3)(5D.1)(4

【答案】B

【解析】

依題意,可求得S3種結(jié)果:①;②;③.可判斷(1)錯(cuò)誤;進(jìn)一步分析有,即中最小為;再對(duì)(2)(3)(4)(5)逐一分析即可得答案.

均由2個(gè)3個(gè)排列而成∴可能情況有三種:

;②;③.故(1)錯(cuò)誤;

中最小為

,則,與無(wú)關(guān),故(2)正確;

,則,與有關(guān),故(3)錯(cuò)誤;

,則,故(4)正確;

,

,∴,即的夾角為,(5)錯(cuò)誤.

綜上所述,命題正確的是(2)(4

故選:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于數(shù)列,稱(其中)為數(shù)列的前k項(xiàng)“波動(dòng)均值”.若對(duì)任意的,都有,則稱數(shù)列為“趨穩(wěn)數(shù)列”.

1)若數(shù)列1,2為“趨穩(wěn)數(shù)列”,求的取值范圍;

2)若各項(xiàng)均為正數(shù)的等比數(shù)列的公比,求證:是“趨穩(wěn)數(shù)列”;

3)已知數(shù)列的首項(xiàng)為1,各項(xiàng)均為整數(shù),前項(xiàng)的和為. 且對(duì)任意,都有, 試計(jì)算:).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在上的函數(shù),如果存在常數(shù),對(duì)區(qū)間的任意劃分:,和式恒成立,則稱上的絕對(duì)差有界函數(shù)。注:。

1)證明函數(shù)上是絕對(duì)差有界函數(shù)。

2)證明函數(shù)不是上的絕對(duì)差有界函數(shù)。

3)記集合存在常數(shù),對(duì)任意的,有成立,證明集合中的任意函數(shù)絕對(duì)差有界函數(shù),并判斷是否在集合中,如果在,請(qǐng)證明并求的最小值;如果不在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左焦點(diǎn)為F,短軸的兩個(gè)端點(diǎn)分別為AB,且為等邊三角形.

1)求橢圓C的方程;

2)如圖,點(diǎn)M在橢圓C上且位于第一象限內(nèi),它關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn)為N;過(guò)點(diǎn)Mx軸的垂線,垂足為H,直線與橢圓C交于另一點(diǎn)J,若,試求以線段為直徑的圓的方程;

3)已知是過(guò)點(diǎn)A的兩條互相垂直的直線,直線與圓相交于P,Q兩點(diǎn),直線與橢圓C交于另一點(diǎn)R,求面積最大值時(shí),直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)在精準(zhǔn)扶貧行動(dòng)中,決定幫助一貧困山區(qū)將水果運(yùn)出銷售.現(xiàn)有8輛甲型車和4輛乙型車,甲型車每次最多能運(yùn)6噸且每天能運(yùn)4次,乙型車每次最多能運(yùn)10噸且每天能運(yùn)3次,甲型車每天費(fèi)用320元,乙型車每天費(fèi)用504元.若需要一天內(nèi)把180噸水果運(yùn)輸?shù)交疖囌,則通過(guò)合理調(diào)配車輛,運(yùn)送這批水果的費(fèi)用最少為(

A.2400B.2560C.2816D.4576

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視臺(tái)舉行一個(gè)比賽類型的娛樂(lè)節(jié)目,兩隊(duì)各有六名選手參賽,將他們首輪的比賽成績(jī)作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將隊(duì)第六位選手的成績(jī)沒(méi)有給出,并且告知大家隊(duì)的平均分比隊(duì)的平均分多4分,同時(shí)規(guī)定如果某位選手的成績(jī)不少于21分,則獲得晉級(jí)”.

1)主持人從隊(duì)所有選手成績(jī)中隨機(jī)抽取2個(gè),求至少有一個(gè)為晉級(jí)的概率;

2)主持人從兩隊(duì)所有選手成績(jī)中分別隨機(jī)抽取2個(gè),記抽取到晉級(jí)選手的總?cè)藬?shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某甲籃球隊(duì)的12名隊(duì)員(含2名外援)中有5名主力隊(duì)員(含一名外援),主教練要從12名隊(duì)員中選5人首發(fā)上場(chǎng),則主力隊(duì)員不少于4人,且有一名外援上場(chǎng)的概率是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)和函數(shù),

1)若為偶函數(shù),試判斷的奇偶性;

2)若方程有兩個(gè)不等的實(shí)根,則

①試判斷函數(shù)在區(qū)間上是否具有單調(diào)性,并說(shuō)明理由;

②若方程的兩實(shí)根為求使成立的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC-,平面ABCD,E,F,G分別為AC,,的中點(diǎn),AB=BC=AC==2.

求證AC平面BEF;

求二面角B-CD-C1的余弦值;

證明直線FG與平面BCD相交

查看答案和解析>>

同步練習(xí)冊(cè)答案