過橢圓的左焦點(diǎn)F的直線交橢圓于點(diǎn)A、B,交其左準(zhǔn)線于點(diǎn)C,若,則此直線的斜率為( )

A、         B、     C、    D、 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知焦點(diǎn)在軸上的橢圓的兩個(gè)焦點(diǎn)分別為, 且,弦過焦點(diǎn),則的周長(zhǎng)為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的中心在原點(diǎn),焦點(diǎn)F在軸上,離心率為,點(diǎn)到F點(diǎn)的距離為,(1)求橢圓的方程;
(2)直線與橢圓交于不同的兩點(diǎn)M、N兩點(diǎn),若,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點(diǎn)是以為焦點(diǎn)的橢圓上一點(diǎn),
,,則此橢圓的離心率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若方程表示橢圓,則的取值范圍是(    )
A.(5,9)B.(5,+∞)
C.(1,5)∪(5,9)D.(-∞,9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿足.
(I)求點(diǎn)G的軌跡C的方程;
(II)過點(diǎn)(2,0)作直線,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè) 是否存在這樣的直線,使四邊形OASB的對(duì)角線相等(即|OS|=|AB|)?若存在,求出直線的方程;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(16分)在平面直角坐標(biāo)系中,如圖,已知橢圓的左右頂點(diǎn)為A,B,右頂點(diǎn)為F,設(shè)過點(diǎn)T()的直線TA,TB與橢圓分別交于點(diǎn)M,其中m>0,

①設(shè)動(dòng)點(diǎn)P滿足,求點(diǎn)P的軌跡
②設(shè),求點(diǎn)T的坐標(biāo)
③設(shè),求證:直線MN必過x軸上的一定點(diǎn)
(其坐標(biāo)與m無關(guān))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知以橢圓的右焦點(diǎn)F為圓心,a為半徑的圓與橢圓的右準(zhǔn)線交于不同的兩點(diǎn),則該橢圓的離心率的取值范圍是                                                              (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,以其兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的
四邊形是一個(gè)面積為4的正方形,設(shè)P為該橢圓上的動(dòng)點(diǎn),C、D的坐標(biāo)分別是,則PC·PD的最大值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案