(本小題滿分15分)

已知:在數(shù)列{an}中,a1= ,an+1= an+.

(1)令bn=4n an,求證:數(shù)列{bn}是等差數(shù)列;

(2)若Sn為數(shù)列{an}的前n項的和,Sn+λnan≥ 對任意n∈N*恒成立,求實數(shù)λ的最小值.

解:(1)

由an+1=an+,

得(4n+1) an+1=4nan+2.  ………………………………………………………………1分

所以bn+1=bn+2,

即bn+1-bn=2.…………………………………………………………………3分

故數(shù)列{bn}是首項為1,公差為2的等差數(shù)列.………………………………4分

(2)因為數(shù)列{bn}是首項為1,公差為2的等差數(shù)列,所以bn=1+2(n-1)=2n-1.

因為bn=4n an,所以 an=. ……………………………………………………6分

則Sn= + + +…+ + .

又Sn= + + +…+ + .

所以Sn=+2( + + +…+ )-

                                           …………………………8分

=+2× -.

所以Sn= - × - × .  …………………………10分

因為Sn+λnan≥對任意n∈N*恒成立,

所以 -× -×+λ×≥對任意n∈N*恒成立.

即λ≥×+對任意n∈N*恒成立.………………………………11分

因為n≥1,2n-1≥1,所以×≤,當(dāng)且僅當(dāng)n=1時取等號.

又因為 ≤ ,當(dāng)且僅當(dāng)n=1時取等號.

所以×+≤ ,當(dāng)且僅當(dāng)n=1時取等號.………………………14分

所以λ≥,所以λ的最小值為.…………………………………15分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分15分)

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,試分別解答以下兩小題.

(。┤舨坏仁對任意的恒成立,求實數(shù)的取值范圍;

(ⅱ)若是兩個不相等的正數(shù),且,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期3月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分15分).

已知分別為橢圓

上、下焦點,其中也是拋物線的焦點,

在第二象限的交點,且。

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點P(1,3)和圓,過點P的動直線與圓相交于不同的兩點A,B,在線段AB取一點Q,滿足:,)。求證:點Q總在某定直線上。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題

(本小題滿分15分)

如圖已知,橢圓的左、右焦點分別為,過的直線與橢圓相交于A、B兩點。

(Ⅰ)若,且,求橢圓的離心率;

(Ⅱ)若的最大值和最小值。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省寧波市高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本小題滿分15分)若函數(shù)在定義域內(nèi)存在區(qū)間,滿足上的值域為,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.

(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;

(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省高二下學(xué)期期中考試?yán)頂?shù) 題型:解答題

(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:

(1)第1次抽到理科題的概率;

(2)第1次和第2次都抽到理科題的概率;

(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率

 

 

查看答案和解析>>

同步練習(xí)冊答案