已知函數(shù)f(x)=x2+ax+2,x∈[-5,5],
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若函數(shù)f(x)在[-5,5]上增函數(shù),求a的取值范圍.
解:(1)當(dāng)a=-1時(shí),∵函數(shù)f(x)=x
2 -x+2=
+
,且x∈[-5,5],
故函數(shù)的減區(qū)間為[-5,
],增區(qū)間為 (
,5].
(2)若函數(shù)f(x)在[-5,5]上增函數(shù),則二次函數(shù)f(x)=x
2+ax+2的對(duì)稱(chēng)軸x=-
≤-5,
解得 a≥10,故a的取值范圍為[10,+∞).
分析:(1)當(dāng)a=-1時(shí),根據(jù)函數(shù)f(x)=
+
,且x∈[-5,5],求得函數(shù)的單調(diào)區(qū)間.
(2)由題意可得函數(shù)的對(duì)稱(chēng)軸x=-
≤-5,由此求得a的取值范圍.
點(diǎn)評(píng):本題主要考查求二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.