已知函數(shù)在處取得極小值2.
(1)求函數(shù)的解析式;
(2)求函數(shù)的極值;
(3)設函數(shù),若對于任意,總存在,使得,求實數(shù)的取值范圍.
(1)
(2)當時,函數(shù)有極小值-2;當時,函數(shù)有極大值2
(3)
解析試題分析:(1)∵函數(shù)在處取得極小值2,
科目:高中數(shù)學
來源:
題型:解答題
(本小題滿分14分)
科目:高中數(shù)學
來源:
題型:解答題
(本小題滿分13分)
科目:高中數(shù)學
來源:
題型:解答題
(本小題滿分12分)
科目:高中數(shù)學
來源:
題型:解答題
已知函數(shù),其圖象在點 處的切線方程為
科目:高中數(shù)學
來源:
題型:解答題
設
科目:高中數(shù)學
來源:
題型:解答題
(11分)設集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為和組成數(shù)對(,并構(gòu)成函數(shù)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
∴, ……1分
又,
∴
由②式得m=0或n=1,但m=0顯然不合題意,
∴,代入①式得m=4
∴ ……2分
經(jīng)檢驗,當時,函數(shù)在處取得極小值2, ……3分
∴函數(shù)的解析式為. ……4分
(2)∵函數(shù)的定義域為且由(1)有,
令,解得: , ……5分
∴當x變化時,的變化情況如下表: ……7分x -1 1 — 0 + 0 —
已知函數(shù)f(x)=(x2+ax-2a-3)·e3-x (a∈R)
(1)討論f(x)的單調(diào)性;
(2)設g(x)=(a2+)ex(a>0),若存在x1,x2∈[0,4]使得|f(x1)-g(x2)|<1成立,求a的取值范圍.
設函數(shù)的導函數(shù)為,且。
(Ⅰ)求函數(shù)的圖象在x=0處的切線方程;
(Ⅱ)求函數(shù)的極值。
設為奇函數(shù),a為常數(shù)。
(1)求的值;并證明在區(qū)間上為增函數(shù);
(2)若對于區(qū)間上的每一個的值,不等式恒成立,求實數(shù)m的取值范圍.
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間,并求出在區(qū)間[-2,4]上的最大值.
(1)求的表達式,并判斷的奇偶性;
(2)試證明:函數(shù)的圖象上任意兩點的連線的斜率大于0;
(3)對于,當時,恒有求m的取值范圍。
(Ⅰ)寫出所有可能的數(shù)對(,并計算,且的概率;
(Ⅱ)求函數(shù)在區(qū)間[上是增函數(shù)的概率.
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡,著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號