定義運(yùn)算a⊕b=a2+2ab-b2,記函數(shù)f(x)=sinx⊕cosx
(Ⅰ)已知數(shù)學(xué)公式,且數(shù)學(xué)公式,求f(θ)的值;
(Ⅱ)在給定的直角坐標(biāo)系中,用“五點(diǎn)法”作出函數(shù)f(x)在一個(gè)周期內(nèi)的簡(jiǎn)圖;
(Ⅲ)求函數(shù)f(x)的對(duì)稱中心、最大值及相應(yīng)的x值.

解:(Ⅰ)由題意可得-----(2分)
--------(5分)
(Ⅱ)∵,運(yùn)用“五點(diǎn)法”先列表后描點(diǎn)連線,

0π
x
000
作出函數(shù)f(x)在一個(gè)周期內(nèi)的圖象如下,





(10分)
(Ⅲ)∵函數(shù)y=sinx的對(duì)稱中心為(kπ,0)(k∈Z),且當(dāng)時(shí),ymax=1
,由,解得
∴函數(shù)f(x)的對(duì)稱中心為-------(12分)
當(dāng),即,-------(14分)
分析:(Ⅰ)由新定義可得函數(shù)的解析式,代入化切后計(jì)算可得答案;(Ⅱ)由五點(diǎn)法,列表、描點(diǎn),連線可得圖象;(Ⅲ)函數(shù)y=sinx的對(duì)稱中心為(kπ,0)(k∈Z),且當(dāng)時(shí),ymax=1,把整體代入解之可得答案.
點(diǎn)評(píng):本題考查五點(diǎn)作圖,涉及同角三角函數(shù)的基本關(guān)系和正弦函數(shù)的對(duì)稱性,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算a*b=
a2-b2
,a⊕b=
(a-b)2
,則函數(shù)f(x)=
2*x
(x⊕2)-2
的奇偶性為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算a⊕b=a2-ab-b2,則sin
π
6
⊕cos
π
6
=( 。
A、-
1
2
+
3
4
B、-
1
2
-
3
4
C、1+
3
4
D、1-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于實(shí)數(shù)a和b,定義運(yùn)算“*”a*b=
a2-ab,a<b
b2-ab,a>b
設(shè)f(x)=(2x-1)*(x-1),且關(guān)于x的方程f(x)=a(a∈R)恰有三個(gè)互不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算a⊕b=
a2-b2
,a?b=
(a-b)2
,則f(x)=
2⊕x
(x?2)-2
為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算a⊕b=a2+2ab-b2,則sin
π
12
⊕cos
π
12
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案