如圖所示,AC為的直徑,D為的中點,E為BC的中點.

(Ⅰ)求證:AB∥DE;
(Ⅱ)求證:2AD·CD=AC·BC.

(Ⅰ)詳見解析;(Ⅱ)詳見解析.

解析試題分析:(Ⅰ)通過連接BD,通過證明與同一條直線垂直的兩條直線垂直的思路進行證明線線平行;(Ⅱ)通過證明△DAC∽△ECD,
試題解析:(Ⅰ)連接BD,因為D為的中點,所以BD=DC.因為E為BC的中點,所以DE⊥BC.
因為AC為圓的直徑,所以∠ABC=90°,所以AB∥DE.                    5分
(Ⅱ)因為D為的中點,所以∠BAD=∠DAC,
又∠BAD=∠DCB,則∠DAC=∠DCB.
又因為AD⊥DC,DE⊥CE,所以△DAC∽△ECD.
所以,AD·CD=AC·CE,2AD·CD=AC·2CE,
因此2AD·CD=AC·BC.                                       10分

考點:1.線線平行的證明;2.三角形相似的證明.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知在△ABC中,ABAC,D是△ABC外接圓劣弧上的點(不與點A,C重合),延長BDE.

(1)求證:AD的延長線平分∠CDE;
(2)若∠BAC=30°,△ABCBC邊上的高為2+,求△ABC外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知⊙O的半徑為1,MN是⊙O的直徑,過M點作⊙O的切線AM,C是AM的中點,AN交⊙O于B點,若四邊形BCON是平行四邊形.

(Ⅰ)求AM的長;
(Ⅱ)求sin∠ANC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,、、是圓上三點,的角平分線,交圓,過作圓的切線交的 延長線于.

(Ⅰ)求證:;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知與圓相切于點,直徑 ,連結于點.

(1)求證:;
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知:如圖,點上,平分,交于點.求證:為等腰直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形的外接圓為⊙,是⊙的切線,的延長線與相交于點,
求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,圓與圓內切于點,其半徑分別為,圓的弦交圓于點不在上),求證:為定值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知為銳角△的內心,且,點為內切圓與邊的切點,過點作直線的垂線,垂足為

(1)求證:
(2)求的值.

查看答案和解析>>

同步練習冊答案