(理)如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足,=0,點(diǎn)N的軌跡為曲線E.
(1)求曲線E的方程;
(2)過點(diǎn)S(0,)且斜率為k的動(dòng)直線l交曲線E于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)G,滿足使四邊形NAPB為矩形?若存在,求出G的坐標(biāo)和四邊形NAPB面積的最大值;若不存在,說明理由.

【答案】分析:(1)先判斷NP為AM的中垂線,從而可得|CN|+|AN|=2,故可知?jiǎng)狱c(diǎn)N的軌跡是以點(diǎn)C(-1,0),A(1,0)為焦點(diǎn)的橢圓,由此可得曲線E的方程;
(2)動(dòng)直線l的方程為:y=kx-與橢圓方程聯(lián)立,消元可得(2k2+1)x2-kx-=0,假設(shè)在y上存在定點(diǎn)G(0,m),使得以AB為直徑的圓恒過這個(gè)點(diǎn),則=0恒成立,故可得點(diǎn)G的坐標(biāo),進(jìn)而可得四邊形NAPB面積,利用基本不等式,可確定最值.
解答:解:(1)∵,=0,
∴NP為AM的垂直平分線,∴|NA|=|NM|.
又∵|CN|+|NM|=2
∴|CN|+|AN|=2>2
∴動(dòng)點(diǎn)N的軌跡是以點(diǎn)C(-1,0),A(1,0)為焦點(diǎn)的橢圓.
且橢圓長軸長為2a=2,焦距2c=2
∴a=,c=1,∴b2=1
∴曲線E的方程為;
(2)動(dòng)直線l的方程為:y=kx-與橢圓方程聯(lián)立,消元可得(2k2+1)x2-kx-=0
設(shè)A(x1,y1),B(x2,y2),則,
假設(shè)在y上存在定點(diǎn)G(0,m),滿足題設(shè),則=(x1,y1-m),=(x2,y2-m),
=x1x2+(y1-m)(y2-m)=
由假設(shè)得對(duì)于任意的k∈R,=0恒成立,∴m2-1=0且9m2+m-15-0,解得m=1.
因此,在y軸上存在定點(diǎn)G,使得以AB為直徑的圓恒過這個(gè)點(diǎn),點(diǎn)G的坐標(biāo)為(0,1)
這時(shí),點(diǎn)G到AB的距離d==
SGAPB=|AB|d==
設(shè)2k2+1=t,則,得t∈[1,+∞),
所以SGAPB=,當(dāng)且僅當(dāng)時(shí),上式等號(hào)成立.
因此,四邊形NAPB面積的最大值是
點(diǎn)評(píng):本題是直線與圓錐曲線的綜合問題的考查,是綜合題有一定的難度,考查利用圓錐曲線的定義求曲線方程,考查直線與橢圓的位置關(guān)系,考查面積的計(jì)算,考查基本不等式的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理)如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足
AM
=2
AP
,
NP
AM
=0,點(diǎn)N的軌跡為曲線E.
(1)求曲線E的方程;
(2)過點(diǎn)S(0,
1
3
)且斜率為k的動(dòng)直線l交曲線E于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)G,滿足
GP
=
GA
+
GB
使四邊形NAPB為矩形?若存在,求出G的坐標(biāo)和四邊形NAPB面積的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
)的部分圖象如圖所示.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的對(duì)稱軸方程與單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省常州一中高三(上)12月周練數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

(理)如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足=0,點(diǎn)N的軌跡為曲線E.
(1)求曲線E的方程;
(2)過點(diǎn)S(0,)且斜率為k的動(dòng)直線l交曲線E于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)G,滿足使四邊形NAPB為矩形?若存在,求出G的坐標(biāo)和四邊形NAPB面積的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省武漢市黃陂一中盤龍校區(qū)高二數(shù)學(xué)檢測(cè)試卷(六)(解析版) 題型:解答題

(理)如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足=0,點(diǎn)N的軌跡為曲線E.
(1)求曲線E的方程;
(2)過點(diǎn)S(0,)且斜率為k的動(dòng)直線l交曲線E于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)G,滿足使四邊形NAPB為矩形?若存在,求出G的坐標(biāo)和四邊形NAPB面積的最大值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案