(2009•青島一模)已知集合A={x|x2-x-12≤0,x∈Z},從集合A中任選三個不同的元素a,b,c組成集合M,則能夠滿足a+b+c=0的集合M的概率為=
3
28
3
28
分析:用列舉法表示A,從集合A中任選三個不同的元素a,b,c,共有
C
3
8
種方法,用列舉法求得滿足a+b+c=0的(a,b,c )有6個,由此求得能夠滿足a+b+c=0的集合M的概率.
解答:解:∵已知集合A={x|x2-x-12≤0,x∈Z}={x|(x-4)(x+3)≤0,x∈Z }={-3,-2,-1,0,1,2,3,4},
從集合A中任選三個不同的元素a,b,c,所有的(a,b,c )共有
C
3
8
=56種方法,這里(a,b,c )無排列順序.
而滿足a+b+c=0的(a,b,c )有 (-3,0,3)、(-2,0,2)、(-1,0,1)、(-1,-2,3)、
(-1,-3,4)、(-3,1,2),共6個,
故能夠滿足a+b+c=0的集合M的概率為
6
56
=
3
28

故答案為
3
28
點評:本題考查古典概型問題,可以列舉出試驗發(fā)生包含的事件和滿足條件的事件,應(yīng)用列舉法來解題是這一部分的最
主要思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•青島一模)已知等差數(shù)列{an}的公差為d(d≠0),且a3+a6+a10+a13=32,若am=8,則m為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•青島一模)已知(x2+
1
x
n的二項展開式的各項系數(shù)和為32,則二項展開式中x的系數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•青島一模)復(fù)數(shù)
i
1+2i
(i是虛數(shù)單位)的實部是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•青島一模)在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為矩形,AB=PA=
1a
BC(a>0)

(Ⅰ)當(dāng)a=1時,求證:BD⊥PC;
(Ⅱ)若BC邊上有且只有一個點Q,使得PQ⊥QD,求此時二面角A-PD-Q的余弦值.

查看答案和解析>>

同步練習(xí)冊答案