【題目】求適合下列條件的圓錐曲線的標準方程:
(1)橢圓經過A(2, ),B( );
(2)與雙曲線C1 有公共漸近線,且焦距為8的雙曲線C2方程.

【答案】
(1)解:設橢圓方程為:Ax2+By2=1(A≠B),則∴

∴橢圓標準方程為:


(2)解:因與雙曲線C1 有公共漸近線,故設C2方程為: ,

則①當λ>0時,標準方程為:

∴a2=5λ,b2=3λ則c2=8λ∴

∴λ=2故雙曲線C2方程為:

②當λ<0時,標準方程為:

∴a2=﹣3λ,b2=﹣5λ則c2=﹣8λ∴

∴λ=﹣2故雙曲線C2方程為:


【解析】(1)利用橢圓的標準方程求其方程;(2)根據(jù)雙曲線的漸近線設出雙曲線的方程,并將其化為雙曲線的標準方程,再結合雙曲線的焦距求得其方程.
【考點精析】關于本題考查的橢圓的標準方程,需要了解橢圓標準方程焦點在x軸:,焦點在y軸:才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】以下四個關于圓錐曲線的命題中:
①雙曲線 與橢圓 有相同的焦點;
②以拋物線的焦點弦(過焦點的直線截拋物線所得的線段)為直徑的圓與拋物線的準線是相切的;
③設A、B為兩個定點,k為常數(shù),若|PA|﹣|PB|=k,則動點P的軌跡為雙曲線;
④過定圓C上一點A作圓的動弦AB,O為原點,若 則動點P的軌跡為橢圓.其中正確的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三點A(1,2),B(﹣3,0),C(3,﹣2).
(1)求證△ABC為等腰直角三角形;
(2)若直線3x﹣y=0上存在一點P,使得△PAC面積與△PAB面積相等,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知p:x2﹣2x﹣8≤0,q:x2+mx﹣6m2≤0,m>0.
(1)若q是p的必要不充分條件,求m的取值范圍;
(2)若p是q的充分不必要條件,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)是定義在R上的奇函數(shù),且滿足x>0時,f(x)+xf'(x)>0,f(2)=0,則不等式f(x)>0的解集為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)當時,求在區(qū)間上的最大值和最小值.

)解關于的不等式

)當時,若存在,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】要得到函數(shù)y=sin(4x﹣ )的圖象,只需將函數(shù)y=sin4x的圖象(
A.向左平移 單位
B.向右平移 單位
C.向左平移 單位
D.向右平移 單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】廠為了對新研發(fā)的一種產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到如下數(shù)據(jù)

單價x/

8

8.2

8.4

8.6

8.8

9

銷量y/

90

84

83

80

75

68

(1)求線性回歸方程=x+,其中=-20, =- .

(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系且該產品的成本是4/,為使工廠獲得最大利潤,該產品的單價應定為多少元?(利潤=銷售收入-成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓, ,且圓心在直線上.

Ⅰ)求此圓的方程

(Ⅱ)求與直線垂直且與圓相切的直線方程.

(Ⅲ)若點為圓上任意點,求的面積的最大值.

查看答案和解析>>

同步練習冊答案