已知函數(shù)f(x)=
x
1+x2
,x∈(0,1)

(1)設(shè)x1,x2∈(0,1),證明:(x1-x2)•[f(x1)-f(x2)]≥0;
(2)設(shè)x∈(0,1),證明:
3x2-x
1+x2
9
10
(x-
1
3
)

(3)設(shè)x1,x2,x3都是正數(shù),且x1+x2+x3=1,求u=
3
x
2
1
-x1
1+
x
2
1
+
3
x
2
2
-x2
1+
x
2
2
+
3
x
2
3
-x3
1+
x
2
3
的最小值.
分析:(1)將函數(shù)代入并進(jìn)行化簡(jiǎn)即可得證;
(2)利用(1)的結(jié)論得(x-
1
3
)[f(x)-
1
3
]≥0
,經(jīng)化簡(jiǎn)即可證明;
(3)利用(2)的結(jié)論,代入化簡(jiǎn)u=
3
x
2
1
-x1
1+
x
2
1
+
3
x
2
2
-x2
1+
x
2
2
+
3
x
2
3
-x3
1+
x
2
3
可得最小值
解答:解:(1)(x1-x2)•[f(x1)-f(x2)]=(x1-x2)•[
x1
1+
x
2
1
-
x2
1+
x
2
2
]=
(x1-x2)2(1-x1x2)
(1+
x
1
2
)(1+
x
2
2
)
≥0
,故得證;
(2)由(1)得(x-
1
3
)[f(x)-
1
3
]≥0
,即(x-
1
3
)(
x
1+x2
-
3
10
)≥0
整理得
3x2-x
1+x2
9
10
(x-
1
3
)
,從而得證;
(3)由(2)得u=
3
x
2
1
-x1
1+
x
2
1
+
3
x
2
2
-x2
1+
x
2
2
+
3
x
2
3
-x3
1+
x
2
3
9
10
(x1-
1
3
+x2-
1
3
+x3-
1
3
)=0
,即最小值為0
點(diǎn)評(píng):本題的考點(diǎn)是函數(shù)與方程的綜合運(yùn)用,主要考查已知函數(shù)解析式,證明不等式即求函數(shù)則最值,注意上下小題之間的聯(lián)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實(shí)數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請(qǐng)求出a的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:浙江省東陽(yáng)中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022

已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年河南省許昌市長(zhǎng)葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)、g(x),下列說法正確的是( )
A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案