(本小題滿分10分)選修4-1《幾何證明選講》.
已知A、B、C、D為圓O上的四點,直線DE為圓O的切線,AC∥DE,AC與BD相交于H點

(Ⅰ)求證:BD平分∠ABC
(Ⅱ)若AB=4,AD=6,BD=8,求AH的長.
解:(Ⅰ)  

直線DE為圓0的切線 
.                           …………5分
(Ⅱ)
     
                     …………8分
      
.                 …………10分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

半徑分別為1和2的兩圓外切,作半徑為3的圓與這兩圓均相切,一共可作(    )個.
A.2                B.3             C.4              D.5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

選修41:幾何證明選講
如圖,設AB為⊙O的任意一條不與直線l垂直的直徑,P是⊙O與l的公共點,AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD.
求證:(1) l是⊙O的切線;(2) PB平分∠ABD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(本小題滿分10分)選修4—1:幾何證明選講
如圖,已知與圓相切于點,半徑,

(Ⅰ)求證:;
(Ⅱ)若圓的半徑為3,,求的長度.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.如圖,邊長為的等邊三角形,是等腰直角三角形,,于點.

(1)求的值;
(2)求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求由曲線圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

選修4-1:幾何證明選講
如圖,直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB,直線OB交于⊙O于點E,D,連接EC,CD。
(1)試判斷直線AB與⊙O的位置關系,并加以證明;
(2)若,⊙O的半徑為3,求OA的長。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,已知△ABC中D為AC中點,
AB=5,AC=7,∠AED=∠C,則AE="        "

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(二)選做題(14、15題,考生只能從中選做一題)
(幾何證明選講選做題)
如圖,已知的兩條直角邊,的長分別為,,以為直徑的圓與交于點,則     .

查看答案和解析>>

同步練習冊答案