設(shè)變量x,y滿足約束條件
x+2y≥2
2x+y≤4
4x-y≥-1
,則目標函數(shù)z=3x-y的取值范圍是( 。
A.[-
3
2
,6]
B.[-
3
2
,-1]
C.[-1,6]D.[-6,
3
2
]
作出不等式組表示的平面區(qū)域,如圖所示
由z=3x-y可得y=3x-z,則-z為直線y=3x-z在y軸上的截距,截距越大,z越小
結(jié)合圖形可知,當直線y=3x-z平移到B時,z最小,平移到C時z最大
4x-y=-1
2x+y=4
可得B(
1
2
,3),zmin=-
3
2

x+2y=2
2x+y=4
可得C(2,0),zmax=6
-
3
2
≤z≤6

故選A
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)變量x,y滿足約束條件
x+y≥3
x-y≥-1
2x-y≤3
,則2x+3y的最大值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果實數(shù)x,y滿足條件
x-2y+4≥0
2x+y-2≥0
3x-y-3≤0
,那么z=x+2y的最大值為( 。
A.2B.4C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

不等式組
x+y≥0
x-y≥0
x≤a
(a為常數(shù)),表示的平面區(qū)域面積為8,則x2+y的最小值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某玩具生產(chǎn)公司每天計劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共100個,生產(chǎn)一個衛(wèi)兵需5分鐘,生產(chǎn)一個騎兵需7分鐘,生產(chǎn)一個傘兵需4分鐘,已知總生產(chǎn)時間不超過10小時.若生產(chǎn)一個衛(wèi)兵可獲利潤5元,生產(chǎn)一個騎兵可獲利潤6元,生產(chǎn)一個傘兵可獲利潤3元.
(1)用每天生產(chǎn)的衛(wèi)兵個數(shù)x與騎兵個數(shù)y表示每天的利潤W(元);
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知z=2x+y,x,y滿足
y≥x
x+y≤2
x≥m
,且z的最大值是最小值的4倍,則m的值是( 。
A.
1
4
B.
1
5
C.
1
6
D.
1
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若平面區(qū)域上的點(x,y)滿足不等式
x2
25
+
y2
16
≤1
.則該平面區(qū)域的面積是( 。
A.30B.40C.50D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若實數(shù)x,y滿足條件
x-y+1≥0
x+3y≤0
y≥0
y-1
3x-3
的取值范圍是 ______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知變量x,y滿足
x-y+1≥0
x+y-4≤0
y≥1
,則xy的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案