已知M為圓C:x2+y2-4x-14y+45=0上任一點,且點Q(-2,3).
(Ⅰ)若P(a,a+1)在圓C上,求線段PQ的長及直線PQ的斜率;
(Ⅱ)求|MQ|的最大值和最小值;
(Ⅲ)若M(m,n),求的最大值和最小值.
【答案】分析:(Ⅰ)由點P(a,a+1)在圓C上,可得a=4,即得到P(4,5).,進而求出所以線段PQ的長及直線PQ的斜率.
(Ⅱ)由題意可得圓的圓心C坐標為(2,7),半徑.可得,根據(jù)圓的性質(zhì)可得答案.
(Ⅲ)可知表示直線MQ的斜率,設(shè)直線MQ的方程為:y-3=k(x+2),即kx-y+2k+3=0,根據(jù)直線與圓的位置關(guān)系可得,即可得到答案.
解答:解:(Ⅰ)由點P(a,a+1)在圓C上,
可得a2+(a+1)2-4a-14(a+1)+45=0,所以a=4,P(4,5).
所以,
(Ⅱ)由C:x2+y2-4x-14y+45=0可得(x-2)2+(y-7)2=8.
所以圓心C坐標為(2,7),半徑
可得,
因此 ,
(Ⅲ)可知表示直線MQ的斜率,
設(shè)直線MQ的方程為:y-3=k(x+2),即kx-y+2k+3=0,

由直線MQ與圓C有交點,所以 
可得,
所以的最大值為,最小值為
點評:解決此類問題的關(guān)鍵是熟練掌握圓的坐標方程及其一個的性質(zhì),并且熟練掌握直線與圓的位置關(guān)系的判定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知M為圓C:x2+y2-4x-14y+45=0上任一點,且點Q(-2,3).
(Ⅰ)若P(a,a+1)在圓C上,求線段PQ的長及直線PQ的斜率;
(Ⅱ)求|MQ|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M為圓C:x2+y2-4x-14y+45=0上任一點,且點Q(-2,3).
(Ⅰ)若P(a,a+1)在圓C上,求線段PQ的長及直線PQ的斜率;
(Ⅱ)求|MQ|的最大值和最小值;
(Ⅲ)若M(m,n),求
n-3m+2
的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0119 期末題 題型:解答題

已知M為圓C:x2+y2-4x-14y+45=0上任一點,且點Q(-2,3),
(Ⅰ)若P(a,a+1)在圓C上,求線段PQ的長及直線PQ的斜率;
(Ⅱ)求|MQ|的最大值和最小值;
(Ⅲ)若M(m,n),求的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟寧市魚臺二中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知M為圓C:x2+y2-4x-14y+45=0上任一點,且點Q(-2,3).
(Ⅰ)若P(a,a+1)在圓C上,求線段PQ的長及直線PQ的斜率;
(Ⅱ)求|MQ|的最大值和最小值;
(Ⅲ)若M(m,n),求的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案