(8分)設(shè)a>b>c,求證:bc2+ca2+ab2<b2c+c2a+a2b.

 

【答案】

見(jiàn)解析

【解析】利用綜合法的思想證明不等式,作差后一定要化為因式乘積的形式

解:bc2+ca2+ab2-b2c-c2a-a2b

=b (c2-a2)+b2(a-c)+ac(a-c)

=b(a+c)(c-a)-b2(c-a)-ac(c-a)

=(c-a)(c-b)(b-a)<0

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三下學(xué)期模擬預(yù)測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)f(x)=lnxgx)=ax+,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.[來(lái)源:學(xué)?。網(wǎng)]

(Ⅰ)求a、b的值; 

(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來(lái)源:學(xué),科,網(wǎng)Z,X,X,K]

【解析】第一問(wèn)解:因?yàn)?i>f(x)=lnxgx)=ax+

則其導(dǎo)數(shù)為

由題意得,

第二問(wèn),由(I)可知,令。

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

解:因?yàn)?i>f(x)=lnx,gx)=ax+

則其導(dǎo)數(shù)為

由題意得,

(11)由(I)可知,令。

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市長(zhǎng)寧區(qū)高三教學(xué)質(zhì)量測(cè)試?yán)砜茢?shù)學(xué) 題型:解答題

本小題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

設(shè)函數(shù)是定義域?yàn)?i>R的奇函數(shù).

(1)求k值;

(2)(文)當(dāng)時(shí),試判斷函數(shù)單調(diào)性并求不等式f(x2+2x)+f(x-4)>0的解集;

(理)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式恒成立的的取值范圍;

(3)若f(1)=,且g(x)=a 2xa - 2x-2m f(x) 在[1,+∞)上的最小值為-2,求m的值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年海南省高一期中考試數(shù)學(xué)試卷 題型:解答題

(本題滿分8分)如圖,有一塊矩形空地,要在這塊空地上辟一個(gè)內(nèi)接四邊形為綠地,使其四個(gè)頂點(diǎn)分別落在矩形的四條邊上,已知AB=aa>2),BC=2,且AE=AH=CF=CG,設(shè)AE=x,綠地面積為y.

(Ⅰ)寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式,并指出這個(gè)函數(shù)的定義域;

(Ⅱ)當(dāng)AE為何值時(shí),綠地面積最大?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分18分)本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分7分,第3小題滿分8分)

       由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f -1(x)能確定數(shù)列{bn},bn= f –1(n),若對(duì)于任意nÎN*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.

   (1)若函數(shù)f(x)=確定數(shù)列{an}的自反數(shù)列為{bn},求an;

   (2)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Sn=(cn+).寫(xiě)出Sn表達(dá)式,并證明你的結(jié)論;

   (3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時(shí),設(shè)dn=,Dn是數(shù)列{dn}的前n項(xiàng)之和,且Dn>log a (1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案