由下列各個(gè)不等式:

你能得到一個(gè)怎樣的一般不等式?并加以證明.

試題分析:根據(jù)給出的式子的規(guī)律總結(jié)出能得到的不等式的通式證明則需要運(yùn)用數(shù)學(xué)歸納法.
根據(jù)給出的幾個(gè)不等式可以猜想第個(gè)不等式,即一般不等式為:

用數(shù)學(xué)歸納法證明如下:
(1)當(dāng)n="1" 時(shí),猜想成立.
(2)假設(shè)當(dāng)時(shí)猜想成立,即
則當(dāng)時(shí),

      
這就說(shuō)明猜想也成立,由(1)(2)知,猜想對(duì)一切都成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在數(shù)列中,,且成等差數(shù)列,成等比數(shù)列.
(1)求
(2)根據(jù)計(jì)算結(jié)果,猜想的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,是函數(shù)的兩個(gè)零點(diǎn),其中常數(shù),,設(shè)
(Ⅰ)用,表示;
(Ⅱ)求證:;
(Ⅲ)求證:對(duì)任意的

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)a、b、c均為正數(shù).求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

圖1,2,3,4分別包含1,5,13和25個(gè)互不重疊的單位正方形,按同樣的方式構(gòu)造圖形,則第個(gè)圖包含______個(gè)互不重疊的單位正方形。

圖1      圖2         圖3              圖4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下面四個(gè)判斷中,正確的是(  )
A.式子1+k+k2+…+kn(n∈N*)中,當(dāng)n=1時(shí)式子值為1
B.式子1+k+k2+…+kn-1(n∈N*)中,當(dāng)n=1時(shí)式子值為1+k
C.式子1++…+(n∈N*)中,當(dāng)n=1時(shí)式子值為1+
D.設(shè)f(x)=(n∈N*),則f(k+1)=f(k)+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

用數(shù)學(xué)歸納法證明不等式“2n>n2+1對(duì)于n≥n0的自然數(shù)n都成立”時(shí),第一步證明中的起始值n0應(yīng)取為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明1+a+a2+ +an+1 (n∈N*,a≠1),在驗(yàn)證n=1時(shí),左邊所得的項(xiàng)為( 。
A.1B.1+a+a2 C.1+aD.1+a+a2+a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

用數(shù)學(xué)歸納法證明不等式+…+>的過(guò)程中,由n=k推導(dǎo)n=k+1時(shí),不等式的左邊增加的式子是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案