(本題滿分12分)設(shè)函數(shù)..
(Ⅰ)時(shí),求的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),設(shè)的最小值為,若恒成立,求實(shí)數(shù)t的取值范圍.
(Ⅰ) 當(dāng)時(shí),增區(qū)間為 ,減區(qū)間為 (Ⅱ)

試題分析:(Ⅰ)解:,                        ……1分
當(dāng)時(shí),,解的增區(qū)間為,
的減區(qū)間為.                                         ……4分
(Ⅱ)解:若,由,由,
所以函數(shù)的減區(qū)間為,增區(qū)間為;
,                                          ……6分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001043761399.png" style="vertical-align:middle;" />,所以,
,則恒成立,
由于
當(dāng)時(shí),,故函數(shù)上是減函數(shù),
所以成立;                                                   ……10分
當(dāng)時(shí),若,故函數(shù)上是增函數(shù),
即對(duì)時(shí),,與題意不符;
綜上,為所求.                                                        ……12分
點(diǎn)評(píng):考查函數(shù)時(shí),不論考查函數(shù)的什么性質(zhì),先考查函數(shù)的定義域.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

對(duì)于三次函數(shù),給出定義:設(shè)是函數(shù)的導(dǎo)數(shù),的導(dǎo)數(shù),若方程有實(shí)數(shù)解,則稱點(diǎn)為函數(shù)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”應(yīng)對(duì)對(duì)稱中心.根據(jù)這一發(fā)現(xiàn),則函數(shù)的對(duì)稱中心為              

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

定義在上的函數(shù),對(duì)任意均有,則          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)
(1)若a>0,求函數(shù)的最小值;
(2)若a是從1,2,3三個(gè)數(shù)中任取一個(gè)數(shù),b是從2,3,4,5四個(gè)數(shù)中任取一個(gè)數(shù),求f (x)>b恒成立的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線在點(diǎn)處的切線斜率為                 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是函數(shù)的一個(gè)極值點(diǎn)。
(Ⅰ)求;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若直線與函數(shù)的圖象有3個(gè)交點(diǎn),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù)
(Ⅰ) 求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖像在點(diǎn)處的切線的傾斜角為,問:在什么范圍取值時(shí),對(duì)于任意的,函數(shù)g(x)=x3 +x2在區(qū)間上總存在極值?
(Ⅲ)當(dāng)時(shí),設(shè)函數(shù),若在區(qū)間上至少存在一個(gè),
使得成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=ln x-.
(1)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(2)若f(x)在[1,e]上的最小值為,求a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x2+lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:當(dāng)x>1時(shí),x2+lnx<x3.

查看答案和解析>>

同步練習(xí)冊(cè)答案