(本小題滿分12分)

已知直線l1:4x:-3y+6=0和直線l2:x=-,.若拋物線C:y2=2px上的點到直線l1和直線l2的距離之和的最小值為2.

(I )求拋物線C的方程;

(II)直線l過拋物線C的焦點F與拋物線交于A,B兩點,且AA1,BB1都垂直于直線l2,垂足為A1,B1,直線l2與y軸的交點為Q,求證:為定值。

 

【答案】

(Ⅰ) (Ⅱ)= 

【解析】

試題分析:(Ⅰ)為拋物線的準線,焦點為,由拋物線的定義知,拋物線上的點到直線的距離等于其到焦點的距離,

拋物線上的點到直線的距離與到焦點的距離之和的最小值為焦點到直線的距離……3分

所以

所以拋物線的方程為……………5分

(Ⅱ)設(shè),,

設(shè):,則

所以,

,

……………7分

………………10分

=……………12分

考點:本題主要考查拋物線的標準方程,拋物線的幾何意義,直線與拋物線的位置關(guān)系。

點評:中檔題,本題求拋物線的標準方程,主要運用的是拋物線的幾何性質(zhì),注意明確焦點軸和p的值。研究直線與拋物線的位置關(guān)系,往往應(yīng)用韋達定理,通過“整體代換”,簡化解題過程,實現(xiàn)解題目的。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案