(本題滿分12分)已知是等比數(shù)列的前項(xiàng)和,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列是單調(diào)遞減數(shù)列,求實(shí)數(shù)的取值范圍.
(Ⅰ) (Ⅱ)
解析試題分析:(Ⅰ) 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cc/f/qoq9p.png" style="vertical-align:middle;" />,,所以, ,
兩式相除得,所以,.
所以. ……4分
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f8/6/1dyp43.png" style="vertical-align:middle;" />,所以,
由題意可知對(duì)任意,數(shù)列單調(diào)遞減,所以,
即,即對(duì)任意恒成立, ……6分
當(dāng)是奇數(shù)時(shí),,當(dāng),取得最大值-1,所以;
當(dāng)是偶數(shù)時(shí), ,當(dāng),取得最小值,所以.
綜上可知,,即實(shí)數(shù)的取值范圍是. ……12分
考點(diǎn):本小題主要考查由數(shù)列的前n項(xiàng)和求數(shù)列的通項(xiàng)公式,和已知數(shù)列的單調(diào)性求參數(shù)的取值范圍,考查學(xué)生的運(yùn)算求解能力和分類討論思想的應(yīng)用.
點(diǎn)評(píng):數(shù)列是一種特殊的函數(shù),所以討論數(shù)列的性質(zhì)時(shí)可以借助函數(shù)中的解法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
設(shè)數(shù)列{}的前n項(xiàng)和為,且=1,,數(shù)列{}滿足,點(diǎn)P(,)在直線x―y+2=0上,.
(1)求數(shù)列{ },{}的通項(xiàng)公式;
(2)設(shè),求數(shù)列{}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列前項(xiàng)和滿足,等差數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式
(2)設(shè),數(shù)列的前項(xiàng)和為,問的最小正整數(shù)n是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)數(shù)列中,,
(1)求證:時(shí),是等比數(shù)列,并求通項(xiàng)公式。
(2)設(shè),, 求:數(shù)列的前n項(xiàng)的和。
(3)設(shè) 、 、 。記 ,數(shù)列的前n項(xiàng)和。證明: 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)
已知數(shù)列的前項(xiàng)和滿足,等差數(shù)列滿足,。
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,問>的最小正整數(shù)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知是等差數(shù)列,其中.
(1)求通項(xiàng)公式;
(2)數(shù)列從哪一項(xiàng)開始小于0;
(3)求值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
投擲一枚均勻硬幣2次,記2次都是正面向上的概率為,恰好次正面向上的概率為;等比數(shù)列滿足:,
(I)求等比數(shù)列的通項(xiàng)公式;
(II)設(shè)等差數(shù)列滿足:,,求等差數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知數(shù)列中,,,其前項(xiàng)和滿足(,).
(Ⅰ)求證:數(shù)列為等差數(shù)列,并求的通項(xiàng)公式;
(Ⅱ)設(shè), 求數(shù)列的前項(xiàng)和 ;
(Ⅲ)設(shè)(為非零整數(shù),),試確定的值,使得對(duì)任意,有恒成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com