在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=
3
,E為AB上一個(gè)動(dòng)點(diǎn),則D1E+CE的最小值為( 。
A、2
2
B、
10
C、
5
+1
D、x≤y
分析:畫(huà)出幾何體的圖形,連接D1A延長(zhǎng)至G使得AG=AD,連接C1B延長(zhǎng)至F使得BF=BC,連接EF,D1F,則D1F為所求.
解答:精英家教網(wǎng)解:畫(huà)出幾何體的圖形,連接D1A延長(zhǎng)至G使得AG=AD,
連接C1B延長(zhǎng)至F使得BF=BC,連接EF,則ABFG為正方形,
連接D1F,則D1F為D1E+CE的最小值:D1F=
GF2+D1G2
=
12+( 3)2
=
10

故選B.
點(diǎn)評(píng):本題是中檔題,考查正四棱柱表面距離的最小值問(wèn)題,考查折疊與展開(kāi)的關(guān)系,能夠轉(zhuǎn)化為平面上兩點(diǎn)的距離是解題的關(guān)鍵,考查空間想象能力,計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在正四棱柱ABCD-A1B1C1D1中,棱長(zhǎng)AA1=2,AB=1,E是AA1的中點(diǎn).
(Ⅰ)求證:A1C∥平面BDE;
(Ⅱ)求點(diǎn)A到平面BDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E為CC1的中點(diǎn).
求證:(1)AC1∥平面BDE;(2)A1E⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=2,M、N分別為B1B和A1D的中點(diǎn).
(Ⅰ)求直線(xiàn)MN與平面ADD1A1所成角的大小;
(Ⅱ)求二面角A-MN-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•長(zhǎng)寧區(qū)一模)在正四棱柱ABCD-A1B1C1D1中,已知底面ABCD的邊長(zhǎng)為2,點(diǎn)P是CC1的中點(diǎn),直線(xiàn)AP與平面BCC1B1成30°角,求異面直線(xiàn)BC1和AP所成角的大。ńY(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•昌平區(qū)二模)在正四棱柱ABCD-A1B1C1D1中,E為AD中點(diǎn),F(xiàn)為B1C1中點(diǎn).
(Ⅰ)求證:A1F∥平面ECC1;
(Ⅱ)在CD上是否存在一點(diǎn)G,使BG⊥平面ECC1?若存在,請(qǐng)確定點(diǎn)G的位置,并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案