【題目】銀川一中為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,抽取在校200名學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間(單位:分鐘)進(jìn)行調(diào)查,將收集的數(shù)據(jù)分成,六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時(shí)間不低于40分鐘的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
(1)請(qǐng)根據(jù)直方圖中的數(shù)據(jù)填寫下面的列聯(lián)表,并通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
(2)在這兩組中采取分層抽樣,抽取6人,再?gòu)倪@6名學(xué)生中隨機(jī)抽取2人參加體育知識(shí)問卷調(diào)查,求這2人中一人來自“課外體育達(dá)標(biāo)”和一人來自“課外體育不達(dá)標(biāo)”的概率.
附參考公式與:
【答案】(1)不能;(2).
【解析】分析:(1)根據(jù)頻率分布直方圖,計(jì)算對(duì)應(yīng)的數(shù)據(jù),填寫列聯(lián)表,計(jì)算觀測(cè)值,對(duì)照數(shù)表得出結(jié)論;
(2)根據(jù)分層抽樣以及列舉法求出對(duì)應(yīng)的基本事件數(shù),計(jì)算對(duì)應(yīng)的概率值.
詳解:(1)由題意得“課外體育達(dá)標(biāo)”人數(shù):200×[(0.02+0.005)×10]=50,
則不達(dá)標(biāo)人數(shù)為150,
∴列聯(lián)表如下:
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計(jì) | |
男 | 60 | 30 | 90 |
女 | 90 | 20 | 110 |
合計(jì) | 150 | 50 | 200 |
∴k2==≈6.060<6.635,
∴在犯錯(cuò)誤的概率不超過0.01的前提下沒有理由(或不能)認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān).
(2)由題意在[0,10),[40,50)分別有20人,40人,
則采取分層抽樣在[0,10)抽取的人數(shù)為:人,
在[40,50)抽取的人數(shù)為:人,
[0,10)抽取的人為A,B,在[40,50)抽取的人為a,b,c,d,
從這6任中隨機(jī)抽取2人的情況為:AB,Aa,Ab,Ac,Ad,Ba,Bb,Bc,Bd,ab,ac,ad,bc,bd,cd共15種,
2人中一人來自“課外體育達(dá)標(biāo)”和一人來自“課外體育不達(dá)標(biāo)”共有:Aa,Ab,Ac,Ad,Ba,Bb,Bc,Bd共8種,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)及圓.
(1)若直線過點(diǎn)且與圓心的距離為1,求直線的方程;
(2)設(shè)過點(diǎn)的直線與圓交于兩點(diǎn),當(dāng)時(shí),求以線段為直徑的圓的方程;
(3)設(shè)直線與圓交于兩點(diǎn),是否存在實(shí)數(shù),使得過點(diǎn)的直線垂直平分弦?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請(qǐng)說明理由;
(2)若函數(shù)在上是以4為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某人在垂直于水平地面ABC的墻面前的點(diǎn)A處進(jìn)行射擊訓(xùn)練.已知點(diǎn)A到墻面的距離為AB,某目標(biāo)點(diǎn)P沿墻面上的射線CM移動(dòng),此人為了準(zhǔn)確瞄準(zhǔn)目標(biāo)點(diǎn)P,需計(jì)算由點(diǎn)A觀察點(diǎn)P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,則tanθ的最大值是 . (仰角θ為直線AP與平面ABC所成角)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓C: (a>b>0),動(dòng)直線l與橢圓C只有一個(gè)公共點(diǎn)P,且點(diǎn)P在第一象限.
(1)已知直線l的斜率為k,用a,b,k表示點(diǎn)P的坐標(biāo);
(2)若過原點(diǎn)O的直線l1與l垂直,證明:點(diǎn)P到直線l1的距離的最大值為a﹣b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列推理是類比推理的是( )
A. 由周期函數(shù)的定義判斷某函數(shù)是否為周期函數(shù)
B. 由,猜想任何一個(gè)小6的偶數(shù)都是兩個(gè)奇質(zhì)數(shù)之和
C. 平面內(nèi)不共線的3個(gè)點(diǎn)確定一個(gè)圓,由此猜想空間不共面的4個(gè)點(diǎn)確定一個(gè)球
D. 已知為定點(diǎn),若動(dòng)點(diǎn)P滿足(其中為常數(shù)),則點(diǎn)的軌跡為橢圓
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)志愿者協(xié)會(huì)有6名男同學(xué),4名女同學(xué),在這10名同學(xué)中,3名同學(xué)來自數(shù)學(xué)學(xué)院,其余7名同學(xué)來自物理、化學(xué)等其他互不相同的七個(gè)學(xué)院,現(xiàn)從這10名同學(xué)中隨機(jī)選取3名同學(xué),到希望小學(xué)進(jìn)行支教活動(dòng)(每位同學(xué)被選到的可能性相同).
(1)求選出的3名同學(xué)是來自互不相同學(xué)院的概率;
(2)設(shè)X為選出的3名同學(xué)中女同學(xué)的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)常數(shù)a≥0,函數(shù)f(x)= .
(1)若a=4,求函數(shù)y=f(x)的反函數(shù)y=f﹣1(x);
(2)根據(jù)a的不同取值,討論函數(shù)y=f(x)的奇偶性,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com