已知函數(shù)(x∈R)在區(qū)間[-1,1]上是增函數(shù).
(Ⅰ)求實(shí)數(shù)a的值所組成的集合A;
(Ⅱ)設(shè)關(guān)于x的方程的兩實(shí)數(shù)根為x1、x2,試問(wèn):是否存在實(shí)數(shù)m,使得不等式對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求0出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由?
解:(Ⅰ)
因?yàn)楹瘮?shù)f(x)在區(qū)間[-1,1]上是增函數(shù),所以f‘(x)≥0在區(qū)間x∈[-1,1]恒成立
即有x2-ax-2≤0在區(qū)間[-1,1]上恒成立。 構(gòu)造函數(shù)g(x)=x2-ax-2
∴滿足題意的充要條件是:
所以所求的集合A=[-1,1] ………(7分)
(Ⅱ)由題意得:得到:x2-ax-2=0………(8分)
因?yàn)椤?a2+8>0 所以方程恒有兩個(gè)不等的根為x1、x2由根與系數(shù)的關(guān)系有:
……(9分)
因?yàn)?sub>,
所以要使不等式
對(duì)任意恒成立,
當(dāng)且僅當(dāng)恒成立 ………………11分
構(gòu)造函數(shù)
對(duì)任意的恒成立的充要條件是
故存在實(shí)數(shù)m滿足題意且為
為所求。 ………………14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x+2x+m(m為常數(shù)),則f(-1)的值為( )
A.-3 B.-1
C.1 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年陜西省西安市高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)是定義在R上的奇函數(shù),且f(x)的圖象關(guān)于直線x=1對(duì)稱.
(1)求證:f(x)是周期為4的周期函數(shù);
(2)若(0<x≤1),求x∈[-5,-4]時(shí),函數(shù)f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東始興縣風(fēng)度中學(xué)高一數(shù)學(xué)競(jìng)賽試卷(解析版) 題型:選擇題
下列說(shuō)法中,正確的是( )
A、集合的非空真子集的個(gè)數(shù)是7;
B、函數(shù)的單調(diào)遞減區(qū)間是;
C、已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x∈(-∞,0)時(shí),f(x)=x-x4,則當(dāng)x∈(0,+∞)時(shí),f(x)= -x-x4
D、、已知f()=x+3,則=。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com