已知圓2x2+2y2-8x-8y-1=0的圓心為M,B為該圓上任意一點,當(dāng)直線BM 與直線l:x+y-9=0 相交于點A時,圓上總存在點C使∠BAC=45°.
(1)當(dāng)點A的橫坐標(biāo)為4時,求直線AC的方程;
(2)求點A的橫坐標(biāo)的取值范圍.
(1)依題意M(2,2),A(4,5),kAM=
3
2
,
設(shè)直線AC的斜率為k,則
|k-
3
2
|
|1+
3
2
k|
=1
,
解得k=-5或k=
1
5
,
故所求直線AC的方程為5x+y-25=0或x-5y+21=0;

(2)圓的方程可化為(x-2)2+(y-2)2=(
34
2
2,設(shè)A點的橫坐標(biāo)為a.
則縱坐標(biāo)為9-a;
①當(dāng)a≠2時,kAB=
7-a
a-2
,設(shè)AC的斜率為k,把∠BAC看作AB到AC的角,
則可得k=
5
2a-9
,直線AC的方程為y-(9-a)=
5
2a-9
(x-a)
即5x-(2a-9)y-2a2+22a-81=0,
又點C在圓M上,
所以只需圓心到AC的距離小于等于圓的半徑,
|5×2-2(2a-9)-2a2+22a-81|
25+(2a-9)2
34
2
,
化簡得a2-9a+18≤0,
解得3≤a≤6;
②當(dāng)a=2時,則A(2,7)與直線x=2成45°角的直線為y-7=x-2
即x-y+5=0,M到它的距離d=
|2-2+5|
2
=
5
2
2
34
2

這樣點C不在圓M上,
還有x+y-9=0,顯然也不滿足條件,
綜上:A點的橫坐標(biāo)范圍為[3,6].
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:2x2+2y2-8x-8y-1=0和直線l:x+y-9=0過直線l上一點A作△ABC,使∠BAC=45°,AB過圓心M,且B,C在圓M上.
(1)當(dāng)A的橫坐標(biāo)為4時,求直線AC的方程;
(2)求點A的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓2x2+2y2-8x-8y-1=0的圓心為M,B為該圓上任意一點,當(dāng)直線BM 與直線l:x+y-9=0 相交于點A時,圓上總存在點C使∠BAC=45°.
(1)當(dāng)點A的橫坐標(biāo)為4時,求直線AC的方程;
(2)求點A的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省杭州高級中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知圓2x2+2y2-8x-8y-1=0的圓心為M,B為該圓上任意一點,當(dāng)直線BM 與直線l:x+y-9=0 相交于點A時,圓上總存在點C使∠BAC=45°.
(1)當(dāng)點A的橫坐標(biāo)為4時,求直線AC的方程;
(2)求點A的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省杭州高級中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知圓2x2+2y2-8x-8y-1=0的圓心為M,B為該圓上任意一點,當(dāng)直線BM 與直線l:x+y-9=0 相交于點A時,圓上總存在點C使∠BAC=45°.
(1)當(dāng)點A的橫坐標(biāo)為4時,求直線AC的方程;
(2)求點A的橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案