【題目】三棱錐中, 互相垂直, , 是線段上一動點,若直線與平面所成角的正切的最大值是,則三棱錐的外接球的表面積是( 。

A. B. C. D.

【答案】B

【解析】是線段上一動點,連接互相垂直,∴就是直線與平面所成角,當最短時,即時直線與平面所成角的正切的最大.

此時, ,在直角△中,

三棱錐擴充為長方體,則長方體的對角線長為

∴三棱錐的外接球的半徑為,

∴三棱錐的外接球的表面積為

B.

點睛:空間幾何體與球接、切問題的求解方法

(1)求解球與棱柱、棱錐的接、切問題時,一般過球心及接、切點作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識尋找?guī)缀沃性亻g的關(guān)系求解.

(2)若球面上四點構(gòu)成的三條線段兩兩互相垂直,且,一般把有關(guān)元素“補形”成為一個球內(nèi)接長方體,利用求解.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】若對于x>0, ≤a恒成立,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的最大值為6,求常數(shù)的值;

(2)若函數(shù)有兩個零點,求的取值范圍,并求的值;

(3)在(1)的條件下,若,討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面α與平面β相交于直線l,l1在平面α內(nèi),l2在平面β內(nèi),若直線l1和l2是異面直線,則下列說法正確的是(
A.l與都相交l1 , l2
B.l至少與l1 , l2中的一條相交
C.l至多與l1 , l2中的一條相交
D.l與l1 , l2都不相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正三棱柱中,側(cè)棱, , 分別為棱的中點, 分別為線段的中點.

(1)求證:直線平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=x+ (a>0)在區(qū)間 上單調(diào)遞減,在區(qū)間 上單調(diào)遞增;函數(shù)
(1)請寫出函數(shù)f(x)=x2+ (a>0)與函數(shù)g(x)=xn+ (a>0,n∈N,n≥3)在(0,+∞)的單調(diào)區(qū)間(只寫結(jié)論,不證明);
(2)求函數(shù)h(x)的最值;
(3)討論方程h2(x)﹣3mh(x)+2m2=0(0<m≤30)實根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,△ABC是邊長為4的等邊三角形,D為AB邊中點,且CC1=2AB.

(1)求證:平面C1CD⊥平面ABC;
(2)求證:AC1∥平面CDB1;
(3)求三棱錐D﹣CAB1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正方形ABCD所在的平面與三角形CDE所在的平面交于CD,且AE⊥平面CDE.

(1)求證:AB∥平面CDE;
(2)求證:平面ABCD⊥平面ADE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若命題p:曲線 =1為雙曲線,命題q:函數(shù)f(x)=(4﹣a)x在R上是增函數(shù),且p∨q為真命題,p∧q為假命題,則實數(shù)a的取值范圍是

查看答案和解析>>

同步練習冊答案