已知是直線被橢圓所截得的線段的中點,則直線的方程是(  )

A. B. C. D. 

D

解析試題分析:利用“點差法”即可得出直線的斜率,即設(shè)直線與橢圓相交于兩點,代入橢圓方程得,兩式相減得,由兩點的中點可知代入上式可求直線的斜率,然后利用點斜式即可得出方程.
考點:直線與圓錐曲線的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:單選題

巳知中心在坐標(biāo)原點的雙曲線C與拋物線x2="2py(p" >0)有相同的焦點F,點A是兩曲線的交點,且AF丄y軸,則雙曲線的離心率為(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知雙曲線 的一個焦點與拋物線的焦點重合,且雙曲線的離心率等于,則該雙曲線的方程為(   )

A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知點在拋物線C:的準(zhǔn)線上,過點A的直線與C在第一象限相切于點B,記C的焦點為F,則直線BF的斜率為(    )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)拋物線x2=4y與橢圓=1交于點E,F(xiàn),則△OEF(O為坐標(biāo)原點)的面積為(  )

A.3 B.4 C.6 D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知雙曲線=1的右焦點為(3,0),則該雙曲線的離心率等于(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

直線4kx-4y-k=0與拋物線y2=x交于A、B兩點,若|AB|=4,則弦AB的中點到直線x+=0的距離等于(  )
A.      B.2          C.      D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)e是橢圓=1的離心率,且e∈(,1),則實數(shù)k的取值范圍是(  )

A.(0,3) B.(3,)
C.(0,3)∪(,+∞) D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

[2013·天津高考]已知雙曲線=1(a>0,b>0)的兩條漸近線與拋物線y2=2px(p>0)的準(zhǔn)線分別交于A,B兩點,O為坐標(biāo)原點.若雙曲線的離心率為2,△AOB的面積為,則p=(  )

A.1B.C.2D.3

查看答案和解析>>

同步練習(xí)冊答案