已知f(x)=sin(ωx+
π
3
)
(ω>0),f(
π
6
)=f(
π
3
),且f(x)在區(qū)間(
π
6
,
π
3
)
上有最小值,無最大值,則ω=______.
如圖所示,
∵f(x)=sin(ωx+
π
3
)
,
且f(
π
6
)=f(
π
3
),
又f(x)在區(qū)間(
π
6
,
π
3
)
內(nèi)只有最小值、無最大值,
∴f(x)在
π
6
+
π
3
2
=
π
4
處取得最小值.
π
4
ω+
π
3
=2kπ-
π
2
(k∈Z).
∴ω=8k-
10
3
(k∈Z).
∵ω>0,
∴當(dāng)k=1時,ω=8-
10
3
=
14
3

當(dāng)k=2時,ω=16-
10
3
=
38
3
,此時在區(qū)間(
π
6
π
3
)
內(nèi)已存在最大值.
故ω=
14
3

故答案為:
14
3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖是函數(shù)y=Asin(φx+φ)在一個周期內(nèi)的圖象,此函數(shù)的解析式為可為( 。
A.y=2sin(2x+
π
3
B.y=2sin(2x+
3
C.y=2sin(
x
2
-
π
3
D.y=2sin(2x-
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<
π
2
)
部分圖象如圖所示.
(Ⅰ)求f(x)的最小正周期及解析式;
(Ⅱ)設(shè)g(x)=f(x)-cos2x,求函數(shù)g(x)在區(qū)間x∈[0,
π
2
]
上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,則的取值范圍是:()
A.  B.  C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)f(x)=2013sin(?x+θ)滿足對任意的x都有f(x)=f(2-x),則2014cos(?+θ)=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=sin(ωx+
π
3
)(ω>0)
,若f(
π
6
)=f(
π
3
)
且f(x)在區(qū)間(
π
6
,
π
3
)
上有最小值,無最大值,則ω的值為( 。
A.
2
3
B.
5
3
C.
14
3
D.
38
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=2sin(ωx+∅)的圖象如圖所示,則ω的值是( 。
A.πB.
3
C.
3
2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=3sin(
x
2
+
π
6

(1)用五點(diǎn)法畫出f(x)在區(qū)間[0,4π]上的圖象;
(2)說明該函數(shù)圖象是由y=sinx函數(shù)圖象經(jīng)過怎樣的伸縮變換得來.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)A(
3
2
1
2
)
是單位圓上一點(diǎn),一個動點(diǎn)從點(diǎn)A出發(fā),沿圓周按逆時針方向勻速旋轉(zhuǎn),12秒旋轉(zhuǎn)一周.2秒時,動點(diǎn)到達(dá)點(diǎn)B,t秒時動點(diǎn)到達(dá)點(diǎn)P.設(shè)P(x,y),其縱坐標(biāo)滿足y=f(t)=sin(ωt+φ)(-
π
2
<φ<
π
2
)

(1)求點(diǎn)B的坐標(biāo),并求f(t);
(2)若0≤t≤6,求
AP
AB
的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案