【題目】函數(shù)y= 的定義域是(
A.(1,2]
B.(1,2)
C.(2,+∞)
D.(﹣∞,2)

【答案】B
【解析】解:∵log2(x﹣1),∴x﹣1>0,x>1

根據(jù) ,得出x≤2,又在分母上不等于0,即x≠2

∴函數(shù)y= 的定義域是(1,2)

故選B.

【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的定義域及其求法和對(duì)數(shù)函數(shù)的定義域的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開(kāi)方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零;對(duì)數(shù)函數(shù)的定義域范圍:(0,+∞).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,在其定義域既是奇函數(shù)又是減函數(shù)的是(
A.y=|x|
B.y=﹣x3
C.y=( x
D.y=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=AC=5,BB1=BC=6,D,E分別是AA1和B1C的中點(diǎn)
(1)求證:DE∥平面ABC;
(2)求三棱錐E﹣BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x﹣a)(x﹣b)(其中a>b)的圖象如圖所示,則函數(shù)g(x)=b+logax的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣1,1),B(7,﹣1),C(﹣2,5),AB邊上的中線所在直線為l.
(1)求直線l的方程;
(2)若點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)為D,求△BCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一果農(nóng)種植了1000棵果樹(shù),為估計(jì)其產(chǎn)量,從中隨機(jī)選取20棵果樹(shù)的產(chǎn)量(單位:kg)作為樣本數(shù)據(jù),得到如圖所示的頻率分布直方圖.已知樣本中產(chǎn)量在區(qū)間(45,50]上的果樹(shù)棵數(shù)為8,

(1)求頻率分布直方圖中a,b的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這20棵果樹(shù)產(chǎn)量的中位數(shù);
(3)根據(jù)頻率分布直方圖,估計(jì)這1000棵果樹(shù)的總產(chǎn)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】盒子中有5個(gè)大小形狀完全相同的小球,其中黑色小球有3個(gè),標(biāo)號(hào)分別為1,2,3,白色小球有2個(gè),標(biāo)號(hào)分別為1,2.
(1)若從盒中任取兩個(gè)小球,求取出的小球顏色相同且標(biāo)號(hào)之和小于或等于4的概率;
(2)若盒子里再放入一個(gè)標(biāo)號(hào)為4的紅色小球,從中任取兩個(gè)小球,求取出的兩個(gè)小球顏色不同且標(biāo)號(hào)之和大于3的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐S﹣ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC且分別交AC、SC于D、E,又SA=AB,SB=BC,

(1)求證:BD⊥平面SAC;
(2)求二面角E﹣BD﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y2=4 x的交點(diǎn)為橢圓 (a>b>0)的右焦點(diǎn),且橢圓的長(zhǎng)軸長(zhǎng)為4,左右頂點(diǎn)分別為A,B,經(jīng)過(guò)橢圓左焦點(diǎn)的直線l與橢圓交于C,D(異于A,B)兩點(diǎn).

(1)求橢圓標(biāo)準(zhǔn)方程;
(2)求四邊形ADBC的面積的最大值;
(3)若M(x1 , y1)N(x2 , y2)是橢圓上的兩動(dòng)點(diǎn),且滿x1x2+2y1y2=0,動(dòng)點(diǎn)P滿足 (其中O為坐標(biāo)原點(diǎn)),是否存在兩定點(diǎn)F1 , F2使得|PF1|+|PF2|為定值,若存在求出該定值,若不存在說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案