【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為為參數(shù)),曲線上的點(diǎn)對(duì)應(yīng)的參數(shù).在以O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過極點(diǎn)的圓.射線與曲線交于點(diǎn)

1)求曲線的直角坐標(biāo)方程;

2)若點(diǎn),在曲線上,求的值.

【答案】(1)(2)

【解析】

1)由題意可知圓的方程為,代入點(diǎn),求得極坐標(biāo)方程,然后再根據(jù)轉(zhuǎn)化公式轉(zhuǎn)化為曲線的直角坐標(biāo)方程;

2)首先求曲線的參數(shù)方程為參數(shù)),即,將兩點(diǎn)的極坐標(biāo)化為直角坐標(biāo),代入橢圓方程,化簡(jiǎn)求值.

1)設(shè)圓的半徑為R,由題意,圓的方程為,(或).

將點(diǎn)代入,得,即.

(或由,得,代入,得),

,

所以曲線的直角坐標(biāo)方程為

2)將及對(duì)應(yīng)的參數(shù),代入,

,即

所以曲線的方程為為參數(shù)),

因?yàn)辄c(diǎn)在曲線上,

所以,

,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn1+λan,其中λ≠0

1)證明{an}是等比數(shù)列,并求其通項(xiàng)公式;

2)當(dāng)λ2時(shí),求數(shù)列{}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】同時(shí)具有性質(zhì): 最小正周期是;② 圖象關(guān)于直線對(duì)稱;③ 上是單調(diào)遞增函數(shù)的一個(gè)函數(shù)可以是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面為菱形,的中點(diǎn)為O,且平面

1)證明:;

2)若,,,求到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為常數(shù)).

1)當(dāng)時(shí),若方程有實(shí)根,求的最小值;

2)設(shè),若在區(qū)間上是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)證明:對(duì)任意的,存在唯一的,使

3)設(shè)(2)中所確定的關(guān)于的函數(shù)為,證明:當(dāng)時(shí),有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)如圖給出的2005年至2016年我國人口總量及增長率的統(tǒng)計(jì)圖,以下結(jié)論不正確的是  

A. 2005年以來,我國人口總量呈不斷增加趨勢(shì)

B. 2005年以來,我國人口增長率維持在上下波動(dòng)

C. 2005年后逐年比較,我國人口增長率在2016年增長幅度最大

D. 可以肯定,在2015年以后,我國人口增長率將逐年變大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)P的極坐標(biāo)為,直線l的極坐標(biāo)方程為.

(1)求直線l的直角坐標(biāo)方程與曲線C的普通方程;

(2)Q是曲線C上的動(dòng)點(diǎn),M為線段PQ的中點(diǎn),直線l上有兩點(diǎn)A,B,始終滿足|AB|4,求MAB面積的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案