(2010•南寧二模)設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個(gè)焦點(diǎn).
(Ⅰ)若橢圓C上的點(diǎn)A(1,
3
2
)到F1、F2兩點(diǎn)的距離之和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)點(diǎn)P是(Ⅰ)中所得橢圓上的動(dòng)點(diǎn),Q(0,
1
2
),求|PQ|的最大值;
(Ⅲ)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)P在橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為KPM、KPN時(shí),那么KPM與KPN之積是與點(diǎn)P位置無(wú)關(guān)的定值.設(shè)對(duì)雙曲線
x2
a2
-
y2
b2
=1寫出具有類似特性的性質(zhì)(不必給出證明).
分析:(Ⅰ)若橢圓C上的點(diǎn)A(1,
3
2
)到F1、F2兩點(diǎn)的距離之和等于4,利用橢圓的定義,求出a,b,c 即可得到橢圓C的方程和焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)點(diǎn)P的坐標(biāo),代入(Ⅰ)中所得橢圓方程,利用Q(0,
1
2
),求|PQ|的表達(dá)式,結(jié)合y的范圍即可求出y的最大值;
(Ⅲ)類似橢圓的定義,直接把橢圓換為雙曲線即可得到性質(zhì).
解答:解:(Ⅰ)橢圓C的焦點(diǎn)坐標(biāo)在x軸上,由橢圓上的點(diǎn)A到到F1、F2兩點(diǎn)的距離之和等于4,
得2a=4,即a=2,
又橢圓C上的點(diǎn)A(1,
3
2
),因此
1
22
+
(
3
2
)
2
b2
=1
,解得b=
3
,所以c=1,
所以橢圓的標(biāo)準(zhǔn)方程為
x2
4
+
y2
3
=1
,F(xiàn)1、F2兩焦點(diǎn)坐標(biāo)為(-1,0),(1,0).
(Ⅱ)設(shè)點(diǎn)P是(Ⅰ)中所得橢圓上的動(dòng)點(diǎn)設(shè)(x,y),
x2
4
+
y2
3
=1
,∴x2=4-
4
3
y2
,Q(0,
1
2
),
|PQ|2=x2+(y-
1
2
)
2
=-
1
3
y2-y+
17
4
=-
1
3
(y+
3
2
)
2
+5
,
因?yàn)?span id="rxfrplj" class="MathJye">-
3
≤y≤
3

當(dāng)y=-
3
2
時(shí),|PQ|的最大值=
5

(Ⅲ)類似性質(zhì),若M、N是雙曲線雙曲線
x2
a2
-
y2
b2
=1上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)P在雙曲線上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為KPM、KPN時(shí),那么KPM與KPN之積是與點(diǎn)P位置無(wú)關(guān)的定值.
點(diǎn)評(píng):本題是中檔題,考查橢圓的定義,標(biāo)準(zhǔn)方程的求法,兩點(diǎn)間的距離公式最值的求法,考查計(jì)算能力轉(zhuǎn)化思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•南寧二模)已知(x-
ax
8展開式中常數(shù)項(xiàng)為1120,其中實(shí)數(shù)a是常數(shù),則展開式中各項(xiàng)系數(shù)的和是
1或6561
1或6561

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•南寧二模)已知向量|
a
-
b
|=1,|
a
|=|
b
|=1則(
a
+
b
2的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•南寧二模)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,如果cosAcosB-sinAsinB>0,那么三邊a,b,c滿足的關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•南寧二模)在上海世博會(huì)期間,某商店銷售11種紀(jì)念品,10元1件的8種,5元一件的3種.小張用50元買紀(jì)念品(每種至多買一件,50元?jiǎng)偤糜猛辏瑒t不同的買法的種數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•南寧二模)球面上三點(diǎn),其中任意兩點(diǎn)的球面距離都等于大圓周長(zhǎng)的
1
4
,若經(jīng)過(guò)三點(diǎn)的小圓的面積為2π,則球的體積為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案