已知圓的半徑為2,圓心在x軸的正半軸上,且圓與直線3x+4y+4=0相切,則圓的標(biāo)準(zhǔn)方程是
 
分析:設(shè)出圓心坐標(biāo)為(a,0)且a>0,因?yàn)閳A與直線3x+4y+4=0相切得到圓心到直線的距離等于半徑2求出a,即可得到圓的標(biāo)準(zhǔn)方程.
解答:解:設(shè)圓心坐標(biāo)為(a,0)且a>0,
因?yàn)閳A與直線3x+4y+4=0相切得到圓心到直線的距離等于半徑2即
|3a+4|
32+42
=2,求得a=2或a=-
14
3
(舍去),所以a=2
圓心坐標(biāo)為(2,0),半徑為2的圓的標(biāo)準(zhǔn)方程為:(x-2)2+y2=4
故答案為(x-2)2+y2=4.
點(diǎn)評(píng):考查學(xué)生理解圓與直線相切時(shí)得到圓心到直線的距離等于半徑,會(huì)用點(diǎn)到直線的距離公式求點(diǎn)到直線的距離,會(huì)根據(jù)圓心坐標(biāo)和半徑寫出圓的標(biāo)準(zhǔn)方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知球的半徑為2,相互成600角的兩個(gè)平面分別截球面得兩個(gè)大小相等的圓,若兩個(gè)圓的公共弦長(zhǎng)為2,則兩圓的圓心距等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•綿陽二模)已知圓的半徑為1,圓心C在直線l1:y=
3
2
x上,其坐標(biāo)為整數(shù),圓C截直線l2:x-3y+9=0所得的弦長(zhǎng)為
2
15
5

(1)求圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)點(diǎn)P在直線l0:x-y-2=0上,過點(diǎn)P作圓的兩條切線PA,PB切點(diǎn)分別為A,B,求四邊形PACB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的半徑為2,圓心在x軸的正半軸上,且與y軸相切,則圓的方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:選擇題

已知圓的半徑為2,圓心在軸的正半軸上,且與直線相切,則此圓的方程是                                                                (    )

A、         B、

C、         D、

 

查看答案和解析>>

同步練習(xí)冊(cè)答案