(本小題滿(mǎn)分12分)已知函數(shù),且。
(1)求的值;
(2)判定的奇偶性;
(3)判斷在上的單調(diào)性,并給予證明。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題10分)已知函數(shù)是奇
函數(shù),當(dāng)x>0時(shí),有最小值2,且f (1).
(Ⅰ)試求函數(shù)的解析式;
(Ⅱ)函數(shù)圖象上是否存在關(guān)于點(diǎn)(1,0)對(duì)稱(chēng)的兩點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定義在(0,+)上的函數(shù)是增函數(shù)
(1)求常數(shù)的取值范圍
(2)過(guò)點(diǎn)(1,0)的直線與()的圖象有交點(diǎn),求該直線的斜率的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題13分)已知函數(shù)與的圖象相交于,,,分別是的圖象在兩點(diǎn)的切線,分別是,與軸的交點(diǎn).
(1)求的取值范圍;
(2)設(shè)為點(diǎn)的橫坐標(biāo),當(dāng)時(shí),寫(xiě)出以為自變量的函數(shù)式,并求其定義域和值域;
(3)試比較與的大小,并說(shuō)明理由(是坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知二次函數(shù)f (x)=,設(shè)方程f (x)
=x的兩個(gè)實(shí)根為x1和x2.
(1)如果x1<2<x2<4,且函數(shù)f (x)的對(duì)稱(chēng)軸為x=x0,求證:x0>—1;
(2)如果∣x1∣<2,,∣x2—x1∣=2,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某企業(yè)生產(chǎn)一種產(chǎn)品時(shí),固定成本為5000元,而每生產(chǎn)100臺(tái)產(chǎn)品時(shí)直接消耗成本要增加2500元,市場(chǎng)對(duì)此商品年需求量為500臺(tái),銷(xiāo)售的收入函數(shù)為R(x)=5x-x2(萬(wàn)元)(0≤x≤5),其中x是產(chǎn)品售出的數(shù)量(單位:百臺(tái))
(1)把利潤(rùn)表示為年產(chǎn)量的函數(shù);
(2)年產(chǎn)量多少時(shí),企業(yè)所得的利潤(rùn)最大?
(3)年產(chǎn)量多少時(shí),企業(yè)才不虧本?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(10分)已知函數(shù)。(1)求不等式的解
集;(2)若不等式的解集為R,求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com