設a,b∈R,定義運算“?”和“⊕”如下:a?b=
a,a≤b
b,a>b
,a⊕b=
b,a≤b
a,a>b
.若m?n≥2,p⊕q≤2,則( 。
A、mn≥4且p+q≤4
B、m+n≥4且pq≤4
C、mn≤4且p+q≥4
D、m+n≤4且pq≤4
考點:進行簡單的合情推理
專題:計算題,推理和證明
分析:利用a?b=
a,a≤b
b,a>b
,a⊕b=
b,a≤b
a,a>b
,將m?n≥2,p⊕q≤2,轉(zhuǎn)化為不等式組,即可得出結(jié)論.
解答:解:由題意,∵m?n≥2,∴
m≤n
m≥2
m>n
n≥2
,
∴mn≥4,
∵p⊕q≤2,
p≤q
q≤2
p>q
p≤2

∴p+q≤4,
∴mn≥4且p+q≤4.
故選:A.
點評:本題考查新定義,考查學生分析解決問題的能力,正確理解新定義是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若α,β∈R,且α≠kπ+
π
2
(k∈Z),β≠kπ+
π
2
(k∈Z),則“α+β=
π
4
”是“(tanα+1)(tanβ+1)=2”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,P(x0,f(x0))是函數(shù)y=f(x)圖象上一點,曲線y=f(x)在點P處的切線交x軸于點A,PB⊥x軸,垂足為B.若△PAB的面積為
1
2
,則 f′(x0)與f(x0)滿足關(guān)系式( 。
A、f′(x0)=f(x0
B、f′(x0)=[f(x0)]2
C、f′(x0)=-f(x0
D、[f′(x0)]2=f(x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

分類變量X和Y的列聯(lián)表如下表,則下列描述正確的是( 。
①(ad-bc)2越小,說明X與Y的關(guān)系越強   
②(ad-bc)2越大,說明X與Y的關(guān)系越強
③K2越小,說明X與Y的關(guān)系越強   
④K2越大,說明X與Y的關(guān)系越強
Y
X
y1 y2 總計
x1 a b a+b
x2 c d c+d
總計 a+c b+d a+b+c+d
A、①②B、②③C、③④D、②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾。疄榱私饽呈行姆渭膊∈欠衽c性別有關(guān),在某醫(yī)院隨機的對入院50人進行了問卷調(diào)查得到了如下的列聯(lián)表:
患心肺疾病 不患心肺疾病 合計
5
10
合計 50
已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為
3
5

(Ⅰ)請將上面的列聯(lián)表補充完整;
(Ⅱ)已知在患心肺疾病的10位女性中,有3位又患胃病.現(xiàn)在從患心肺疾病的10位女性中,選出3名進行其他方面的排查,求選出的這3名女性中至少有2人患胃病的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設i是虛數(shù)單位,則復數(shù)z=(2-i)-i在復平面內(nèi)對應的點位于( 。
A、第一象限B、第二象限C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

i為虛數(shù)單位,則(
1+i
1-i
)2014
=( 。
A、iB、-1C、-iD、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是等比數(shù)列,且a2013+a2015=
2
0
8-x2
dx.則a2014(a2012+2a2014+a2016)的值為(  )
A、(π+1)2
B、4π2
C、16π2
D、(π+2)2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點M(3,-1)繞原點按逆時針旋轉(zhuǎn)90°后,且在矩陣A=
a 0
2 b
對應的變換作用下,得到點N(3,5),求a,b的值.

查看答案和解析>>

同步練習冊答案