過(guò)原點(diǎn)O作圓C:x2+y2-8x=0的弦OA,則弦OA中點(diǎn)M的軌跡方程是   
【答案】分析:注意到:∠OMC=90°,動(dòng)點(diǎn)M在以O(shè)C為直徑的圓上,故可以求出圓心與半徑,寫出圓的方程.
解答:解:M為OA的中點(diǎn),∵∠OMC=90°,動(dòng)點(diǎn)M在以O(shè)C為直徑的圓上,
圓心坐標(biāo)為:(2,0),半徑為:2
∴所求點(diǎn)的軌跡方程為x2+y2-4x=0.
故答案為:x2+y2-4x=0.
點(diǎn)評(píng):考查求軌跡方程的方法:定義法.若動(dòng)點(diǎn)軌跡的條件符合某一基本軌跡的定義(如橢圓、雙曲線、拋物線、圓等),可用定義直接探求.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、過(guò)原點(diǎn)O作圓C:x2+y2-8x=0的弦OA,則弦OA中點(diǎn)M的軌跡方程是
x2+y2-4x=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省溫州市八校高一下學(xué)期期末聯(lián)考試卷數(shù)學(xué) 題型:解答題

過(guò)點(diǎn)作圓Cx2y2r2()的切線,切點(diǎn)為D,且QD=4.

(1)求r的值;

(2)設(shè)P是圓C上位于第一象限內(nèi)的任意一點(diǎn),過(guò)點(diǎn)P作圓C的切線l,且lx軸于點(diǎn)A,交軸于點(diǎn)B,設(shè),求的最小值(O為坐標(biāo)原點(diǎn)).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

過(guò)原點(diǎn)O作圓C:x2+y2-8x=0的弦OA,則弦OA中點(diǎn)M的軌跡方程是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)原點(diǎn)O作圓C:x2+y2-8x=0的弦OA,則弦OA中點(diǎn)M的軌跡方程是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案