【題目】鄭汴一體化是依托鄭州省會(huì)城市資源優(yōu)勢(shì)發(fā)展開(kāi)封的省級(jí)戰(zhàn)略,實(shí)施至今,取得了一系列的成就:兩城電信同價(jià),金融同城,鄭開(kāi)大道全線(xiàn)貫通,城際列車(chē)實(shí)常態(tài)化運(yùn)營(yíng).隨著鄭汴一體化的深入推進(jìn),很多人認(rèn)為鄭州開(kāi)封未來(lái)有望合并.為了解市民對(duì)鄭汴合并的態(tài)度,現(xiàn)隨機(jī)抽查55人,結(jié)果按年齡分類(lèi)統(tǒng)計(jì)形成如下表格:
支持 | 反對(duì) | 合計(jì) | |
不足35歲 | 20 | ||
35歲以上 | 30 | ||
合計(jì) | 25 | 55 |
(1)請(qǐng)完成上面的2×2列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為市民對(duì)鄭汴合并的態(tài)度與年齡有關(guān)?
(2)在上述樣木中用分層抽樣的方法,從攴持鄭汴合并的兩組市民中隨機(jī)抽取6人作進(jìn)一步調(diào)查,從這6人中任選2人,求恰有1位“不足35歲”的市民和1位“35歲及以上”的市民的概率.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.814 | 5.024 | 7.879 | 10.828 |
【答案】(1)有99.5%的把握(2)
【解析】
(1)由題意填寫(xiě)2×2列聯(lián)表,再由公式求得,與7.879比較得答案;
(2)設(shè)所抽樣本中有m個(gè)“不足35歲”的市民,則,得人,得到樣本中有4個(gè)“不足35歲”的市民,2個(gè)“35歲及以上”的市民,然后利用枚舉法求解從這6人中任選2人,求恰有1位“不足35歲”的市民和1位“35歲及以上”的市民的概率.
解:(1)
支持 | 反對(duì) | 合計(jì) | |
不足35歲 | 20 | 5 | 25 |
35歲以上 | 10 | 20 | 30 |
合計(jì) | 30 | 25 | 55 |
由公式.
∴有99.5%的把握認(rèn)為市民對(duì)鄭汴合并的態(tài)度與年齡有關(guān);
(2)設(shè)所抽樣本中有m個(gè)“不足35歲”的市民,則,得人,
∴樣本中有4個(gè)“不足35歲”的市民,2個(gè)“35歲及以上”的市民,
分別記作,從中任選2人的基本事件有,共15個(gè),
其中恰有1位“不足35歲”和1位“35歲及以上”的市民的事件有,共8個(gè),
∴恰有1位“不足35歲”和1位“35歲及以上”的市民的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問(wèn)題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開(kāi)一壺水所用時(shí)間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點(diǎn)圖(如下圖).
表中,.
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)更適宜作燒水時(shí)間關(guān)于開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類(lèi)型?(不必說(shuō)明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)若單位時(shí)間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問(wèn)求得的回歸方程知為多少時(shí),燒開(kāi)一壺水最省煤氣?
附:對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)的斜率和截距的最小二乘法估計(jì)值分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的極小值;
(Ⅱ)當(dāng)時(shí),討論的單調(diào)性;
(Ⅲ)若函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示多面體,其底面為矩形且,四邊形為平行四邊形,點(diǎn)在底面內(nèi)的投影恰好是的中點(diǎn).
(1)已知為線(xiàn)段的中點(diǎn),證明:平面;
(2)若二面角大小為,求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓為其左右焦點(diǎn),為其上下頂點(diǎn),四邊形的面積為.點(diǎn)為橢圓上任意一點(diǎn),以為圓心的圓(記為圓)總經(jīng)過(guò)坐標(biāo)原點(diǎn).
(1)求橢圓的長(zhǎng)軸的最小值,并確定此時(shí)橢圓的方程;
(2)對(duì)于(1)中確定的橢圓,若給定圓,則圓和圓的公共弦的長(zhǎng)是否為定值?如果是,求的值;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了解某產(chǎn)品的獲利情況,將今年1至7月份的銷(xiāo)售收入(單位:萬(wàn)元)與純利潤(rùn)(單位:萬(wàn)元)的數(shù)據(jù)進(jìn)行整理后,得到如下表格:
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
銷(xiāo)售收入 | 13 | 13.5 | 13.8 | 14 | 14.2 | 14.5 | 15 |
純利潤(rùn) | 3.2 | 3.8 | 4 | 4.2 | 4.5 | 5 | 5.5 |
該公司先從這7組數(shù)據(jù)中選取5組數(shù)據(jù)求純利潤(rùn)關(guān)于銷(xiāo)售收入的線(xiàn)性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).假設(shè)選取的是2月至6月的數(shù)據(jù).
(1)求純利潤(rùn)關(guān)于銷(xiāo)售收入的線(xiàn)性回歸方程(精確到0.01);
(2)若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)0.1萬(wàn)元,則認(rèn)為得到的線(xiàn)性回歸方程是理想的.試問(wèn)該公司所得線(xiàn)性回歸方程是否理想?
參考公式:,,,;參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】眾所周知,城市公交車(chē)的數(shù)量太多會(huì)造成資源的浪費(fèi),太少又難以滿(mǎn)足乘客的需求,為此,某市公交公司在某站臺(tái)的50名候車(chē)乘客中隨機(jī)抽取10名,統(tǒng)計(jì)了他們的候車(chē)時(shí)間(單位:分鐘),得到下表.
候車(chē)時(shí)間 | 人數(shù) |
1 | |
4 | |
2 | |
2 | |
1 |
(1)估計(jì)這10名乘客的平均候車(chē)時(shí)間(同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替);
(2)估計(jì)這50名乘客的候車(chē)時(shí)間少于10分鐘的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦點(diǎn)和長(zhǎng)軸長(zhǎng).
(1)設(shè)直線(xiàn)交橢圓于兩點(diǎn),求線(xiàn)段的中點(diǎn)坐標(biāo).
(2)求過(guò)點(diǎn)的直線(xiàn)被橢圓所截弦的中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某地區(qū)年齡在25~55歲的人員中,隨機(jī)抽出100人,了解他們對(duì)今年兩會(huì)的熱點(diǎn)問(wèn)題的看法,繪制出頻率分布直方圖如圖所示,則下列說(shuō)法正確的是( )
A. 抽出的100人中,年齡在40~45歲的人數(shù)大約為20
B. 抽出的100人中,年齡在35~45歲的人數(shù)大約為30
C. 抽出的100人中,年齡在40~50歲的人數(shù)大約為40
D. 抽出的100人中,年齡在35~50歲的人數(shù)大約為50
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com