【題目】為了研究“晚上喝綠茶與失眠”有無(wú)關(guān)系,調(diào)查了100名人士,得到下面的列聯(lián)表:
失眠 | 不失眠 | 合計(jì) | |
晚上喝綠茶 | 16 | 40 | 56 |
晚上不喝綠茶 | 5 | 39 | 44 |
合計(jì) | 21 | 79 | 100 |
由已知數(shù)據(jù)可以求得:,則根據(jù)下面臨界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
可以做出的結(jié)論是( )
A. 在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“晚上喝綠茶與失眠有關(guān)”
B. 在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“晚上喝綠茶與失眠無(wú)關(guān)”
C. 在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“晚上喝綠茶與失眠有關(guān)”
D. 在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“晚上喝綠茶與失眠無(wú)關(guān)”
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)和在的圖象如圖所示:
給出下列四個(gè)命題:
(1)方程有且僅有6個(gè)根;
(2)方程有且僅有3個(gè)根;
(3)方程有且僅有5個(gè)根;
(4)方程有且僅有4個(gè)根.
其中正確命題的個(gè)數(shù)是( )
A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,C是半圓O上除A、B外的一個(gè)動(dòng)點(diǎn),DC垂直于半圓O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB= .
證明:平面ADE⊥平面ACD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列向量組中,可以把向量=(3,2)表示出來(lái)的是( )
A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)
C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , a1=1,且nan+1=2Sn(n∈N*),數(shù)列{bn}滿足b1= , b2= , 對(duì)任意n∈N* , 都有bn+12=bnbn+2 .
求數(shù)列{an}、{bn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】洛薩·科拉茨是德國(guó)數(shù)學(xué)家,他在1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘3加1(即),不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到1,如初始正整數(shù)為6,按照上述變換規(guī)則,我們得到一個(gè)數(shù)列:6,3,10,5,16,8,4,2,1.對(duì)科拉茨猜想,目前誰(shuí)也不能證明,更不能否定,如果對(duì)正整數(shù)按照上述規(guī)則實(shí)施變換(注:1可以多次出現(xiàn))后的第九項(xiàng)為1,則的所有可能取值的集合為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD的底面為平行四邊形,PD⊥平面ABCD,M為PC中點(diǎn).
(1)求證:AP∥平面MBD;
(2)若AD⊥PB,求證:BD⊥平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),是奇函數(shù).
(1)求,的值;
(2)證明:是區(qū)間上的減函數(shù);
(3)若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知三棱柱BCF﹣ADE的側(cè)面CFED與ABFE都是邊長(zhǎng)為1的正方形,M、N兩點(diǎn)分別在AF和CE上,且AM=EN.
(1)求證:平面ABCD⊥平面ADE;
(2)求證:MN∥平面BCF;
(3)若點(diǎn)N為EC的中點(diǎn),點(diǎn)P為EF上的動(dòng)點(diǎn),試求PA+PN的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com