選修4-5:不等式選講
設(shè)函數(shù)f(x)=|x-a|+3x,其中a>0.
(Ⅰ)當(dāng)a=1時,求不等式f(x)≥3x+2的解集
(Ⅱ)若不等式f(x)≤0的解集為{x|x≤-1},求a的值.
分析:(Ⅰ)當(dāng)a=1時,f(x)≥3x+2可化為|x-1|≥2.直接求出不等式f(x)≥3x+2的解集即可.
(Ⅱ)由f(x)≤0得|x-a|+3x≤0分x≥a和x≤a推出等價不等式組,分別求解,然后求出a的值.
解答:解:(Ⅰ)當(dāng)a=1時,f(x)≥3x+2可化為
|x-1|≥2.
由此可得x≥3或x≤-1.
故不等式f(x)≥3x+2的解集為
{x|x≥3或x≤-1}.
(Ⅱ)由f(x)≤0得
|x-a|+3x≤0
此不等式化為不等式組
x≥a
x-a+3x≤
0
x≤a
a-x+3x≤0

x≥a
x≤
a
4
x≤a
x≤-
a
2

因為a>0,所以不等式組的解集為{x|x≤-
a
2
}
由題設(shè)可得-
a
2
=-1,故a=2
點評:本題是中檔題,考查絕對值不等式的解法,注意分類討論思想的應(yīng)用,考查計算能力,?碱}型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
設(shè)x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【選修4-5:不等式選講】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講:
設(shè)正有理數(shù)x是
2
的一個近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求證:y<
2
;
(Ⅱ)比較y與x哪一個更接近于
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•鹽城模擬)(選修4-5:不等式選講)
已知a,b,c為正數(shù),且a2+a2+c2=14,試求a+2b+3c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•烏魯木齊一模)選修4-5:不等式選講
設(shè)函數(shù),f(x)=|x-1|+|x-2|.
(I)求證f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案