【題目】如圖,半徑為1,圓心角為 的圓弧 上有一點C.
(1)若C為圓弧AB的中點,點D在線段OA上運動,求| |的最小值;
(2)若D,E分別為線段OA,OB的中點,當(dāng)C在圓弧 上運動時,求 的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 .
(1)若 時, ,求cos4x的值;
(2)將 的圖象向左移 ,再將各點橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得y=g(x),若關(guān)于g(x)+m=0在區(qū)間 上的有且只有一個實數(shù)解,求m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是市兒童樂園里一塊平行四邊形草地ABCD,樂園管理處準(zhǔn)備過線段AB上一點E設(shè)計一條直線EF(點F在邊BC或CD上,不計路的寬度),將該草地分為面積之比為2:1的左、右兩部分,分別種植不同的花卉.經(jīng)測量得AB=18m,BC=10m,∠ABC=120°.設(shè)EB=x,EF=y(單位:m).
(1)當(dāng)點F與C重合時,試確定點E的位置;
(2)求y關(guān)于x的函數(shù)關(guān)系式;
(3)請確定點E、F的位置,使直路EF長度最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國數(shù)學(xué)有劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接多邊形的邊數(shù)無限增加時,多邊形的面積可無限逼近圓的面積,并創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點后面兩位的近似值3.14,這就是著名的“徽率”.某同學(xué)利用劉徽的“割圓術(shù)”思想設(shè)計了一個計算圓周率的近似值的程序框圖如圖,則輸出S的值為 (參考數(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)( )
A.2.598
B.3.106
C.3.132
D.3.142
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知首項為1的正項數(shù)列{an}滿足an+12+an2< ,n∈N* , Sn為數(shù)列{an}的前n項和.
(1)若a2= ,a3=x,a4=4,求x的取值范圍;
(2)設(shè)數(shù)列{an}是公比為q的等比數(shù)列,若 <Sn+1<2Sn , n∈N* , 求q的取值范圍;
(3)若a1 , a2 , …,ak(k≥3)成等差數(shù)列,且a1+a2+…+ak=120,求正整數(shù)k的最小值,以及k取最小值時相應(yīng)數(shù)列a1 , a2 , …,ak .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明需要購買單價為3元的某種筆記本.他現(xiàn)有10元錢,設(shè)他購買時所花的錢數(shù)為自變量x(單位:元),筆記本的個數(shù)為y(單位:個),若y可以表示為x的函數(shù),則這個函數(shù)的定義域為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com