曲線C:,(為參數(shù))的普通方程為               (     )
A.B.
C.D.
C  

試題分析:,所以,,選C。
點(diǎn)評(píng):簡(jiǎn)單題,注意一般的“消參”方法,涉及正弦、余弦函數(shù),一般采用平方關(guān)系消元法。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,南北方向的公路 ,A地在公路正東2 km處,B地在A東偏北300方向2 km處,河流沿岸曲線上任意一點(diǎn)到公路和到地距離相等.現(xiàn)要在曲線上一處建一座碼頭,向兩地運(yùn)貨物,經(jīng)測(cè)算,從、到修建費(fèi)用都為a萬元/km,那么,修建這條公路的總費(fèi)用最低是(  )萬元
A.(2+)aB.2(+1)aC.5aD.6ª

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線y2=4x的準(zhǔn)線過雙曲線=1(a>0,b>0)的左頂點(diǎn),且此雙曲線的一條漸
近線方程為y=2x,則雙曲線的焦距等于 (  ).
A.B.2C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,∠CAB=∠CBA=30°,AC、BC邊上的高分別為BD、AE,則以A、B為焦點(diǎn),且過D、E的橢圓與雙曲線的離心率分別為,則     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,點(diǎn)到兩點(diǎn),的距離之和為,設(shè)點(diǎn)的軌跡為曲線.
(1)寫出的方程;
(2)設(shè)過點(diǎn)的斜率為)的直線與曲線交于不同的兩點(diǎn),,點(diǎn)軸上,且,求點(diǎn)縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)分別為雙曲線的左、右焦點(diǎn).若在雙曲線右支上存在點(diǎn),滿足,且到直線的距離等于雙曲線的實(shí)軸長(zhǎng),則該雙曲線的離心率為(    )
A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的右焦點(diǎn)為,直線軸交于點(diǎn),若(其中為坐標(biāo)原點(diǎn)).
(I)求橢圓的方程;
(II)設(shè)是橢圓上的任意一點(diǎn),為圓的任意一條直徑(、為直徑的兩個(gè)端點(diǎn)),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線,直線截拋物線C所得弦長(zhǎng)為.
(1)求拋物線的方程;
(2)已知是拋物線上異于原點(diǎn)的兩個(gè)動(dòng)點(diǎn),記試求當(dāng)取得最小值時(shí)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的一條漸近線方程是y=,它的一個(gè)焦點(diǎn)在拋物線的準(zhǔn)線上,則雙曲線的方程為
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案