【題目】某種產(chǎn)品的廣告費(fèi)用支出(百萬(wàn))與銷售額(百萬(wàn))之間有如下的對(duì)應(yīng)數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)畫出散點(diǎn)圖;
(2)求回歸直線方程;
(3)據(jù)此估計(jì)廣告費(fèi)用為10(百萬(wàn))時(shí),銷售收入的值.
【答案】(1)散點(diǎn)圖如圖所示:
(2)=6.5x+17.5(3)廣告費(fèi)用支出為10百萬(wàn)元時(shí),銷售額大約為82.5百萬(wàn)元
【解析】
試題(1)散點(diǎn)圖如圖所示:
(2)
計(jì)算得==5,==50,
=145,=1 380. 6分
于是可得===6.5,
=-=50-6.5×5=17.5.
所以所求的線性回歸方程為=6.5x+17.5.
(3)根據(jù)上面求得的線性回歸方程,當(dāng)廣告費(fèi)用支出為10百萬(wàn)元時(shí),
=6.5×10+17.5=82.5(百萬(wàn)元),
即廣告費(fèi)用支出為10百萬(wàn)元時(shí),銷售額大約為82.5百萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年11月15日,我市召開(kāi)全市創(chuàng)建全國(guó)文明城市動(dòng)員大會(huì),會(huì)議向全市人民發(fā)出動(dòng)員令,吹響了集結(jié)號(hào).為了了解哪些人更關(guān)注此活動(dòng),某機(jī)構(gòu)隨機(jī)抽取了年齡在15~75歲之間的100人進(jìn)行調(diào)查,并按年齡繪制的頻率分布直方圖如圖所示,其分組區(qū)間為:,,,,,.把年齡落在和內(nèi)的人分別稱為“青少年人”和“中老年人”,經(jīng)統(tǒng)計(jì)“青少年人”與“中老年人”的人數(shù)之比為.
(1)求圖中的值,若以每個(gè)小區(qū)間的中點(diǎn)值代替該區(qū)間的平均值,估計(jì)這100人年齡的平均值;
(2)若“青少年人”中有15人關(guān)注此活動(dòng),根據(jù)已知條件完成題中的列聯(lián)表,根據(jù)此統(tǒng)計(jì)結(jié)果,問(wèn)能否有的把握認(rèn)為“中老年人”比“青少年人”更加關(guān)注此活動(dòng)?
關(guān)注 | 不關(guān)注 | 合計(jì) | |
青少年人 | 15 | ||
中老年人 | |||
合計(jì) | 50 | 50 | 100 |
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
附參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正四面體的頂點(diǎn)、、分別在兩兩垂直的三條射線, , 上,則在下列命題中,錯(cuò)誤的是( )
A. 是正三棱錐
B. 直線與平面相交
C. 直線與平面所成的角的正弦值為
D. 異面直線和所成角是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四種說(shuō)法中,正確的個(gè)數(shù)有
①命題均有的否定是:使得;
②“命題為真”是“命題為真”的必要不充分條件;
③,使是冪函數(shù),且在上是單調(diào)遞增;
④不過(guò)原點(diǎn)的直線方程都可以表示成;
A. 3個(gè)B. 2個(gè)C. 1個(gè)D. 0個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面幾種推理過(guò)程是演繹推理的是( 。
A. 某校高三有8個(gè)班,1班有51人,2班有53人,3班有52人,由此推測(cè)各班人數(shù)都超過(guò)50人
B. 由三角形的性質(zhì),推測(cè)空間四面體的性質(zhì)
C. 平行四邊形的對(duì)角線互相平分,菱形是平行四邊形,所以菱形的對(duì)角線互相平分
D. 在數(shù)列中,,可得,由此歸納出的通項(xiàng)公式
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐的底面是邊長(zhǎng)為1的正方形,側(cè)棱底面,且,是側(cè)棱上的動(dòng)點(diǎn).
(1)求四棱錐的體積;
(2)如果是的中點(diǎn),求證:平面;
(3)不論點(diǎn)在側(cè)棱的任何位置,是否都有?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)是拋物線上的動(dòng)點(diǎn),是的準(zhǔn)線上的動(dòng)點(diǎn),直線過(guò)且與(為坐標(biāo)原點(diǎn))垂直,則點(diǎn)到的距離的最小值的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),是兩條不同的直線,,,是三個(gè)不同的平面,給出下列四個(gè)命題:
①若,,則
②若,,,則
③若,,則
④若,,則
其中正確命題的序號(hào)是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)).以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)設(shè)動(dòng)直線:分別與曲線,相交于點(diǎn),,求當(dāng)為何值時(shí),取最大值,并求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com