已知四棱錐(如圖)底面是邊長(zhǎng)為2的正方形.側(cè)棱底面、分別為的中點(diǎn),。
(Ⅰ)求證:平面⊥平面;
(Ⅱ)直線與平面所成角的正弦值為,求PA的長(zhǎng);
(Ⅲ)在條件(Ⅱ)下,求二面角的余弦值。
(1)證明見(jiàn)解析(2)2 (3)
(Ⅰ)證明:∵PA⊥底面ABCD,MN底面ABCD
∴MN⊥PA  又MN⊥AD  且PA∩AD=A
∴MN⊥平面PAD  ………………3分
MN平面PMN   ∴平面PMN⊥平面PAD  …………4分
(Ⅱ)∵BC⊥BA   BC⊥PA   PA∩BA="A  " ∴BC⊥平面PBA
∴∠BPC為直線PC與平面PBA所成的角 
…………7分
在Rt△PBC中,PC=BC/sin∠BPC=

  ………………10分
(Ⅲ)由(Ⅰ)MN⊥平面PAD知   PM⊥MN   MQ⊥MN
∴∠PMQ即為二面角P—MN—Q的平面角  …………12分

   …………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分14分)右圖為一簡(jiǎn)單組合體,其底面ABCD為正方形,平面,
,且,(1)求證:BE//平面PDA;
(2)若N為線段的中點(diǎn),求證:平面;
(3)若,求平面PBE與平面ABCD所成的二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)如圖,在四棱錐P—ABCD中,側(cè)面PAD是正三角形,且垂直于底面ABCD,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,M為PC上一點(diǎn),且PA//平面BDM,
(1)求證:M為PC的中點(diǎn);
(2)求證:面ADM⊥面PBC。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐中,底面是邊長(zhǎng)為2的菱形,且
為正三角形,的中點(diǎn),為棱的中點(diǎn)
(1)求證:平面
(2)求二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一個(gè)簡(jiǎn)單多面體的直觀圖和三視圖如圖所示,它的主視圖和側(cè)視圖都是腰長(zhǎng)為1的等腰直角三角形,俯視圖為正方形,E是PD的中點(diǎn).
(1)求證:;
(2)求證:;             
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直二面角D—AB—E中,四邊形ABCD是邊長(zhǎng)為2的正方形,AE=EB,F(xiàn)
為CE上的點(diǎn),且BF⊥平面ACE.
(Ⅰ)求證:AE⊥平面BCE;
(Ⅱ)求二面角B—AC—E的余弦值;
(Ⅲ)求點(diǎn)D到平面ACE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

四棱錐P—ABCD的底面是邊長(zhǎng)為a的正方形,PB⊥面ABCD.
(1)若面PAD與面ABCD所成的二面角為60°,求這個(gè)四棱錐的體積;
(2)證明無(wú)論四棱錐的高怎樣變化,面PAD與面PCD所成的二面角恒大于90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐中,底面為正方形,且平面,分別是、的中點(diǎn).
(Ⅰ)證明:EF∥平面PCD;
(Ⅱ)求二面角B-CE-F的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

 如圖,在直三棱柱ABC-A1B1C1中,AC=BC=AA1=2, ∠ACB=90°,D、E分別為AC、AA1的中點(diǎn).點(diǎn)F為棱AB上的點(diǎn).
(Ⅰ)當(dāng)點(diǎn)F為AB的中點(diǎn)時(shí).
(1)求證:EF⊥AC1
(2)求點(diǎn)B1到平面DEF的距離.
(Ⅱ)若二面角A-DF-E的大小為的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案