精英家教網 > 高中數學 > 題目詳情
已知數列{an}的前n項和為Sn,對任意n∈N*都有Sn=an-,且1<Sk<9,則k的值為( )
A.2
B.4
C.5
D.6
【答案】分析:根據Sn=an-,令n=1,即可解得a1的值,由an=Sn-Sn-1求出{an}的通項公式,然后求出a1=-1,a2=2,a3=-4,a4=8,a5=-16,據此判斷k的值.
解答:解:當n=1時,a1=a1-,可知a1=-l,
當n≥2時,an=Sn-Sn-1=an ,可知 =-2,即{an}是等比數列,得
an=-1(-2)n-1,得a1=-1,a2=2,a3=-4,a4=8,a5=-16,因為S3<0,S4=5,S5=-8,S6=20,
故知k=4,
故選B.
點評:本題主要考查數列求和和數列函數特性的知識點,解答本題的關鍵是求出{an}的通項公式,本題難度一般.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

19、已知數列{an}的前n項和Sn=n2(n∈N*),數列{bn}為等比數列,且滿足b1=a1,2b3=b4
(1)求數列{an},{bn}的通項公式;
(2)求數列{anbn}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

13、已知數列{an}的前n項和為Sn=3n+a,若{an}為等比數列,則實數a的值為
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習冊答案