在△ABC中,a、b、c分別是角AB、C的對邊,且m =(a,b),n =(cosA,cosB),p=(2sin,2sinA),  若mnp2=9,  試判斷△ABC的形狀.

解析:∵mn,  ∴acosB=bcosA.  由正弦定理,得sinAcosB=sinBcosA,      4分

即sin(AB)=0.

A、B為三角形內(nèi)角,  ∴A=B

p2=9,∴8sin2+4sin2A=9.

∴4[1-cos(B+C)]+4(1-cos2A)=9,       8分

即4cos2A-4cosA+1=0,解得cosA=.

A=.∴△ABC為正三角形.                  12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題P:底面是等邊三角形,側(cè)面與底面所成的二面角都相等的三棱錐是正三棱錐;命題Q:在△ABC中A>B是cos2
A
2
+
π
4
)<cos2
B
2
+
π
4
)成立的必要非充分條件,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中a、b、c分別內(nèi)角A、B、C的對邊,已知向量
m
=(c,b),
n
=(sin2B,sinC),且
m
n

(l)求角B的度數(shù);
(2)若△ABC的面積為
3
3
4
,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•淮北二模)在△ABC中a,b,c分別為角A,B,C所對的邊的邊長.
(1)試敘述正弦或余弦定理并證明之;
(2)設(shè)a+b+c=1,求證:a2+b2+c2
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中a、b、c分別是角A、B、C的對邊,若△ABC的周長等于20,面積是10
3
,A=60°,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中a、b、c分別是角A、B、C的對邊,b=2,a=1,cosC=
34

(1)求邊c 的值;
(2)求sin(2A+C)的值.

查看答案和解析>>

同步練習(xí)冊答案