若點O和點F分別為橢圓的中心和左焦點,點P為橢圓上的任意一點,則
C
先求出左焦點坐標F,設P(x0,y0),根據(jù)P(x0,y0)在橢圓上可得到x0、y0的關系式,表示出向量 ,根據(jù)數(shù)量積的運算將x0、y0的關系式代入組成二次函數(shù)進而可確定答案.
解答:解:由題意,F(xiàn)(-1,0),設點P(x0,y0),則有,解得y02=3(1-),
因為=(x0+1,y0),=(x0,y0),
所以?=x0(x0+1)+y02=?=x0(x0+1)+3(1-)=+x0+3,
此二次函數(shù)對應的拋物線的對稱軸為x0=-2,
因為-2≤x0≤2,所以當x0=2時,?取得最大值,
故選C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
已知點P(-1,)是橢圓E)上一點,F1、F2分別是橢圓E的左、右焦點,O是坐標原點,PF1x軸.
(1)求橢圓E的方程;
(2)設A、B是橢圓E上兩個動點,(0<λ<4,且λ≠2).求證:直線AB的斜率等于橢圓E的離心率;
(3)在(2)的條件下,當△PAB面積取得最大值時,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

本小題滿分12分)
已知點P(4,4),圓C與橢圓E
有一個公共點A(3,1),F1F2分別是橢圓的左、右焦點,直線PF1與圓C相切.
(Ⅰ)求m的值與橢圓E的方程;
(Ⅱ)Q為橢圓E上的一個動點,求的取值范圍.
w.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的兩個焦點,過且與坐標軸不平行的直線與橢圓相交于M,N兩點,如果的周長等于8.
(I)求橢圓的方程;
(Ⅱ)若過點(1,0)的直線與橢圓交于不同兩點P、Q,試問在軸上是否存在定點E(,0),使恒為定值?若存在,求出E的坐標及定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

點,則△ABF2的周長是
A.12 B.24C.22D.10

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的離心率為                 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
已知橢圓,A(2,0)為橢圓與X軸的一個交點,過原點O的直線交橢圓于B、C兩點,且,
(1)  求此橢圓的方程;
(2)  若P(x,y)為橢圓上的點且P的橫坐標X≠±1,試判斷是否為定值?若是定值,求出該定值;若不是定值,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的兩焦點分別為F1、F2,過F1作直線交橢圓于A、B兩點,
則△ABF2周長為_____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

以橢圓的頂點為焦點,以橢圓的焦點為頂點的雙曲線方程為

查看答案和解析>>

同步練習冊答案