已知四棱柱ABCD-A1B1C1D1中的底面是菱形,且∠DAB=∠A1AB=∠A1AD=60°,AD=1,AA1=a,F(xiàn)為棱BB的中點,M為線段AC的中點.設=,=,=.試用向量法解下列問題:
(1)求證:直線MF∥平面ABCD;
(2)求證:直線MF⊥面A1ACC1;
(3)是否存在a,使平面AFC1與平面ABCD所成二面角的平面角是30°?如果存在,求出相應的a 值,如果不存在,請說明理由.(提示:可設出兩面的交線)

【答案】分析:(1)由:||=||=1,||=a,,,=,=),
=+,=),==2,由此能證明直線MF∥平面ABCD.
(2)由=(=0,=()(=0,知MF⊥AA1,MF⊥AC,AC和AA1是面ABCD內(nèi)的相交直線,由此能證明直線MF⊥面A1ACC1
(3)設平面AFC1與平面ABCD的交線為c,兩平面有一個公共點A,故A在直線c上;MF在面AFC1內(nèi),直線MF∥平面ABCD,有MF∥直線c,由直線MF⊥面A1ACC1,直線AC和直線AC1在平面A1ACC1內(nèi),知平面AFC1與平面ABCD所成二面角的平面角是∠C1AC由此能推導出不存在這樣的a值,使平面AFC1與平面ABCD所成二面角的平面角是30°.
解答:(1)證明:||=||=1,
||=a,,
,(2分)
=,
=),
=+
=),(3分)
==2
DB在面ABCD內(nèi),MF在面ABCD外,
∴直線MF∥平面ABCD;(4分)
(2)證明:=(=0,(5分)
=()•(=0,(6分)
∴MF⊥AA1,MF⊥AC,AC和AA1是面ABCD內(nèi)的相交直線,
∴直線MF⊥面A1ACC1;(7分)
(3)解:設平面AFC1與平面ABCD的交線為c,兩平面有一個公共點A,
∴A在直線c上;MF在面AFC1內(nèi),直線MF∥平面ABCD,有MF∥直線c,
由2)知,直線MF⊥面A1ACC1,直線AC和直線AC1在平面A1ACC1內(nèi),
∴MF⊥AC1,MF⊥AC,因此,有AC1⊥直線c,AC⊥直線c,
平面AFC1與平面ABCD所成二面角的平面角是∠C1AC,(10分)
假設存在這樣的a,使∠C1AC=30°,
則cos30°=cos,
=
=(12分)
整理,得方程:4a2-3a+9=0,
△=(-3)2-4×4×9=9-4×4×9<0,方程無解,(13分)
因此不存在這樣的a值,
使平面AFC1與平面ABCD所成二面角的平面角是30°(14分)
點評:本題考查直線MF∥平面ABCD和直線MF⊥面A1ACC1的證明,探索a的值是否存在.考查運算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對數(shù)學思維的要求比較高,有一定的探索性.綜合性強,難度大,是高考的重點.解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知四棱柱ABCD-A1B1C1D1中,側(cè)棱AA1⊥底面ABCD,AA1=2,底面四邊形ABCD的邊長均大于2,且∠DAB=45°,點P在底面ABCD內(nèi)運動且在AB,AD上的射影分別為M,N,若|PA|=2,則三棱錐P-D1MN體積的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱柱ABCD-A1B1C1D1的底面是邊長為1的正方形,側(cè)棱垂直底邊ABCD四棱柱,AA1=2,E是側(cè)棱AA1的中點,求
(1)求異面直線BD與B1E所成角的大。
(2)求四面體AB1D1C的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱柱ABCD-A1B1C1D1中的底面是菱形,且∠DAB=∠A1AB=∠A1AD=60°,AD=1,AA1=a,F(xiàn)為棱BB的中點,M為線段AC的中點.設
AB
=
e1
,
AD
=
e2
AA1
=
e3
.試用向量法解下列問題:
(1)求證:直線MF∥平面ABCD;
(2)求證:直線MF⊥面A1ACC1
(3)是否存在a,使平面AFC1與平面ABCD所成二面角的平面角是30°?如果存在,求出相應的a 值,如果不存在,請說明理由.(提示:可設出兩面的交線)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江門一模)如圖,已知四棱柱ABCD-A1B1C1D1的俯視圖是邊長為3的正方形,側(cè)視圖是長為3寬為
3
的矩形.
(1)求該四棱柱的體積;
(2)取DD1的中點E,證明:面BCE⊥面ADD1A1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知四棱柱ABCD-A1B1C1D1的底面ABCD是矩形,AB=4,AA1=3,∠BAA1=60°,E為棱C1D1的中點,則
AB
AE
=
 

查看答案和解析>>

同步練習冊答案