與曲線相切于點處的切線方程是(   )
A.B.C.D.
D
解:因為曲線相切于點處的切線的斜率為2,則切線方程是,選D
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)
(1)求函數(shù)的最小值;
(2)設,討論函數(shù)的單調性;
(3)斜率為的直線與曲線交于,兩點,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線在點處的切線方程為           .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

.在求某些函數(shù)的導數(shù)時,可以先在解析式兩邊取對數(shù),再求導數(shù),這比用一般方法求導數(shù)更為簡單,如求的導數(shù),可先在兩邊取對數(shù),得,再在兩邊分別對x求導數(shù),得即為,即導數(shù)為。若根據上面提供的方法計算函數(shù)的導數(shù),則 _        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列求導數(shù)運算正確的是(  )
A.(x+)′=1+B.(log2x)′=
C.(3x)′=3xlog3eD.(x2cosx)′=-2xsinx

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的導數(shù)為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的導數(shù)為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的導數(shù)是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)處的導數(shù)為3,則的解析式可能為(    )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案